ANTIBIOTIC THERAPY IN AVIAN SPECIES

Ricardo de Matos, LMV, MSc, DABVP (Avian), DECZM (Avian, Small Mammal)
Department of Clinical Sciences, College of Veterinary Medicine, Cornell University

Learning Objectives

- Review the challenges of antibiotic therapy in birds
- Describe criteria for antibiotic selection, in general and more specific to treatment of bacterial diseases in birds
- Review common antibiotics used, highlighting their advantages, disadvantages and limitations for use in avian species

Challenges of antibiotic therapy in birds

- Advanced stage of disease at presentation
- Few to no pharmacokinetic studies investigating antibiotic drugs in avian species
- Significant variability in absorption and metabolism of drugs between the different species of birds (example: canary vs. macaw vs. turkey)
- Faster metabolism when compared with dogs and cats → rapid drug elimination → may be difficult to establish therapeutic antibiotic concentrations
- Difficult administration, especially in the smaller bird species and/or with TID or more frequent drug administration
- Extra-label use of antibiotic drugs
- Potential for drug residues in the meat or eggs and restricted use in production animals (www.farad.org)

Criteria for antibiotic selection

- Ideal antibiotic therapy protocol
 - Reaches therapeutic concentrations quickly for an immediate effect
 - Easy to administer
 - Minimal to no toxicity
- To consider before starting an antibiotic
 - Collect all diagnostic samples before initiating treatment
 - Consider if treatment with antibiotic is necessary, i.e., is the cause of the presenting signs a bacterial disease? Take into consideration information from:
 - History
 - Physical exam
 - Clinical pathology
 - Elevated white blood cell count with heterophilia or monocytosis suggests the presence of an infectious disease
 - Chemistry panel results provide valuable information regarding liver and kidney function, which will aid in antibiotic selection (ex: not using aminoglycosides in cases of renal disease; not using sulfonamides in dehydrated animals)
 - Cytology
 - Psittacine normal flora
 - GI
 - Mostly gram-positive bacteria (*Lactobacillus* spp., *Bacillus*, *Corynebacterium* sp., non-hemolytic *Streptococcus*, *Micrococcus* sp., and *Staphylococcus epidermidis*.)
 - <10-14% of gram-negative bacteria
 - Few to no yeast; should not be budding
- Respiratory tract
 - Low numbers of Bacillus sp., Corynebacterium sp., and Lactobacillus sp. in the upper respiratory tract and trachea
 - Low numbers of Streptococcus sp. or Staphylococcus sp. in the upper respiratory tract
 - No gram-negative bacteria.
- Culture and sensitivity
- Imaging (to rule in or out non-infectious diseases such as trauma, toxicity, etc.)
 - When treating empirically, consider bacteria that commonly cause disease
 - Psittacine
 - Gram negative: Enterobacteriaceae, Salmonella, Klebsiella, Pseudomonas
 - Chlamydophila psittaci
 - Clostridium spp.
 - Passeriformes
 - Gram positives: Staphylococcus, Streptococcus, Enterococcus spp.
 - When reviewing the results of a culture and sensitivity, use the susceptibility characteristics and the MIC value
 - The term "susceptible" with a disk susceptibility test is mostly based on effective plasma drug concentrations in humans
 - As drugs are potentially metabolized and excreted at a higher rate in birds, a more frequent administration protocol may be required to achieve antibiotic concentrations comparable to humans
 - For these reasons, the MIC number should be used and preference should be given to antibiotics that are known to be effective at very low concentrations
- Mode of administration
 - Parenteral, per os, topical
 - Parenteral
 - IM
 - Because of their size, the IM route is rarely used for an extended period of time in birds
 - Care should be taken when giving IM injections in the pectoral muscles in free range birds
 - IV/IO: reserved primarily for the most severe cases of bacterial disease.
 - SC: most frequently utilized parenteral route of administration
 - PO
 - Used extensively, especially with at home administered antibiotics
 - Minimize frequency of administration → less handling of the bird → less stress
 - Given by syringe, in the water or in the food.
 - Some birds will initially accept a flavored oral suspension of an antibiotic but later refuse it
 - Difficult to administer antibiotics in pill form to most parrots but relatively easy in galliformes, waterfowl and raptors
 - Water based treatment
 - Should be avoided since
 - Therapeutic concentrations are rarely achieved
 - Many drugs are unstable in water for long periods
 - Change in flavor of the water → bird will not drink enough → under-dosing and/or death due to dehydration
 - Use should be limited to
 - Treatment of small birds that cannot be handled
 - Treatment of group of birds
 - Direct oral administration
 - Commercially available or compounded formulations preferred
 - Medication can be added to a favorite food item to facilitate administration
 - When in the hospital, gavage feeding can be used for accurate drug administration
The effect of this route of drug administration on the human-bird bond should be taken into consideration. Training, treats and reduction in frequency of drug administration should help reduce this problem.

- **Topical**
 - **Nebulization**
 - **Goals**
 - hydration of mucous membranes
 - mucolysis, expectorant, bronchodilation effects
 - Delivery of antibiotic or antifungal medications
 - 2 main types of nebulizer used
 - **Ultrasonic**
 - Relies on a vibrating mesh to produce an aerosol of drug
 - Inefficient to aerosolize suspensions
 - **Jet**
 - Uses a jet of air to draw up liquid through a capillary and atomizer
 - Advantages
 - Smaller particle side
 - Cheaper, more robust, and more readily available than ultrasonic models
 - Disadvantage: lower output rate.
 - Both types have been shown to damage certain drugs in nebulization; this, together with risk of toxicity, are the reasons supporting the recommendation to use only drugs or formulations made for nebulization in humans.

- **Particle size**
 - Determine effect required
 - Topical → particle size less important
 - Systemic → particle size important since small size is needed for absorption

- **Other factors that affect drug penetration besides particle size**
 - Flow rate: the faster the air flow the more likely the drug is to penetrate deeper
 - Deepness of breath: deeper breathing will enable deeper penetration compared to rapid shallow breathing
 - Airway anatomy: more tortuous results → more deposition
 - Disease: mucous and/or bronchoconstriction → more deposition

- **Toxicity**
 - **Direct**
 - Variable absorption of nebulized drugs from lungs and/or air sacs of birds
 - Few studies in birds
 - Gentamycin, ceftriaxone: not absorbed
 - Lincomycin, tylosin and oxytetracycline: absorbed well and achieve effective plasma concentrations after nebulization
 - **Indirect**
 - Ingestion of the medication in the feathers with grooming
 - Toxicity to humans
 - More clinical trials are needed to investigate protocol safety and efficacy in avian species

- **Skin**
 - Effective for local infections
Toxicity possible with ingestion
- Direct effect of creams and ointments in the feathers
 - Antibiotic impregnated polymethylmethacrylate beads
 - High concentration at the infection site
 - more efficient and with less side effects
 - Antibiotic concentrations at the site usually much higher than MIC for most pathogens may be effective against resistant organisms
- Elution of antibiotic from PMMA varies with:
 - Type of cement used to make beads
 - Size and surface area of the beads (more elution)
 - Antibiotic used
 - Concentration of the drug (more elution)
 - Amount of fluid contacting the beads.
- Antibiotic choices
 - Must be water-soluble, heat-stable (100°C), bactericidal, broad-spectrum, and available as a powder
 - Commonly used: aminoglycosides, cephalosporins, fluoroquinolones, penicillins, and clindamycin.

Frequency of administration
- Less frequent less stress with handling and higher compliance
- Important to understand the concept of time dependent vs. concentration dependent antibiotics
 - Concentration dependent drugs
 - Must reach a level of approximately 8-10 times the MIC to be most effective bactericidal most effective given once daily at high doses.
 - Efficacy is increased in these drugs by increasing the dose or by parenteral administration.
 - Ex: fluoroquinolones, aminoglycosides.
 - Time dependent drugs
 - Must remain above the MIC for most of the interval between doses
 - Usually has to be administered several times a day.
 - Increasing the efficacy usually involves increasing the frequency of administration.
 - Ex: cephalosporins, trimethoprim-sulfonamides, macrolides, tetracyclines

Volume to be administered
- Volume especially important for PO, SQ or IM administration
- For oral administration, small volumes are easier to administer, which requires the availability of a concentrated oral formulation (consider compounding pharmacies)
- Demonstrate drug administration while reviewing to go home instructions and make sure the owner can do the treatments recommended
- Verify compliance during follow up phone call and/or appointment.

Conditions at the infection site
- Abscesses, granulomas and presence of mucous make achieving adequate drug concentrations at the infection site difficult or impossible
- Water-soluble drugs (aminoglycosides, penicillins, cephalosporins) enter the extracellular fluid (where most bacterial infections occur) well but do not penetrate granulomas or areas with large amount of mucus
- Lipid soluble drugs (fluoroquinolones, tetracyclines) can potentially penetrate abscesses and cells, being effective against intra-cellular bacteria.
- Surgical debridement of granulomas and abscesses is recommended to increase tissue penetration and improve antibiotic efficacy
- After debridement, localized treatment (as described above) can be implemented, in addition to systemic antibiotic therapy
- Nebulization with a mucolytic agent can also aid antibiotic penetration in cases of respiratory infections.

Toxicity
Not species specific and based on clinical condition
- Renal disease and aminoglycosides
- Liver disease and doxycycline

Synergistic effect: nephrotoxicity enrofloxacin and ketoconazole

Class specific
- Direct
 - IM Enrofloxacin
 - Injectable penicillins?
 - TMS and GI disturbances (especially macaws)
- Indirect
 - Many antibiotics used orally in birds can cause dysbiosis resulting in secondary infections by resistant bacteria, yeast, and aspergillosis.
 - Prevention
 ✓ Monitor cloacal cultures and fecal gram stains for potential pathogens.
 ✓ Maximize husbandry and hygiene to reduce exposure to environmental pathogens.
 ✓ Minimize stress to reduce immune suppression
 ✓ Consider prophylaxis with antifungal drug
 ✓ Supplement with a probiotic

Antibiotic classes and its use in birds

Quinolones
- Enrofloxacin, ciprofloxacin, marbofloxacin
- Bactericidal and concentration dependent antibiotic

Spectrum
- Resistance has been seen in *E. coli*, *Klebsiella* spp., *Acinetobacter* spp., and *Pseudomonas aeruginosa*.
- Poor activity against many *Streptococcus* spp., *Enterococcus* spp., and anaerobes.
- *In vitro* activity against *Chlamydophila psittaci*, with inconsistent results in clinical trials → not recommended for treatment of chlamydiosis

Advantages
- Bactericidal at relatively low MIC
- SI:D administration
- Lipophilic → good tissue distribution
- Different modes of administration possible

Disadvantages
- Dysbiosis GI flora with prolonged treatment
- High pH → possible reaction at the injection site
- Not recommended to be given IV to birds
- Poor efficacy against *Pseudomonas*
- Marbofloxacin: may affect molt

Doses
- 15-30 mg/kg once daily
 - Lower dose used for bacteria with an MIC <0.25µg/ml
 - Higher dose used for more resistant bacteria (MIC 0.5-1µg/ml)

Uses
- Gram negative bacterial infections
- Bacterial infections of the gastrointestinal tract and respiratory tract
- Critical care/in hospital use
- Parenteral, oral, nebulization, topical
Aminoglycosides
- Amikacin, gentamicin, neomycin
- Bactericidal and concentration dependent antibiotic
- Spectrum
 - Excellent activity: gram-negative bacteria (including most *Pseudomonas aeruginosa*),
 - Good activity: *Staphylococcus*
 - Poor activity: *Streptococcus*, mycoplasma and *Chlamydophila*.
 - No activity active: anaerobes, facultative anaerobes at sites with low O\textsubscript{2} tension (abscesses)
- Advantages
 - SID-BID administration
 - Bactericidal, gram negative activity (including *Pseudomonas*)
- Disadvantages
 - Risk of nephrotoxicity: relatively common but reversible with short treatments at adequate doses
 - Poor absorption from the GI tract → limited use (injectable, topical in the GI or airway-nebulization)
- Doses
 - MIC required to control gram-negative aerobes with aminoglycosides is dependent on the drug used (> 3 x MIC)
 - Amikacin: 10-25 mg/kg/day
 - Gentamicin, tobramycin: 2.5-5 mg/kg/day
- Uses
 - Should be limited to 7 days and used with caution in dehydrated patients or those with compromised renal function
 - Gram negative bacterial infections including *Pseudomonas aeruginosa*
 - Bacterial infections of the gastrointestinal tract and respiratory tract
 - Critical care/in hospital use
 - Parenteral, oral, nebulization, topical
 - Amikacin: less toxic, wider spectrum →, most commonly used
 - Gentamicin: cheaper but more toxic than amikacin
 - Tobramycin: effective against *Pseudomonas* but more toxic than amikacin

Penicillins
- Penicillin, amoxicillin, ampicillin, ticarcillin, piperacillin
- Bactericidal and time dependent
- Spectrum
 - Early generation: good gram-positive spectrum, some gram-negative activity.
 - Later generation: improved gram-negative spectrum, only available as injectable formulations.
- Advantage
 - Bactericidal, gram negative bacteria (incl. *Pseudomonas*)
 - Good tissue distribution
 - Relatively low toxicity
- Disadvantage
 - Require dosing q4-8h
 - Reported toxicity of procaine to birds < 1kg (finches, canaries, budgerigars, cockatiels)
- Doses
 - Relatively high due to low bioavailability after oral administration
 - Ranging from 100-200 mg/kg BID and up to 4-6 times per day
 - Higher doses and/or more frequent administration needed when treating severe infections or infection caused by bacteria with high MIC
- Uses
 - Gram positive or anaerobic infections > gram negative infections
 - Bacterial dermatitis
 - Dog/cat bite wounds
 - Pododermatitis
- Post-operative for orthopedic surgery cases
- Bacterial infections of the gastrointestinal and respiratory tracts (alone or in combination with aminoglycosides)
- Parenteral, oral, nebulization, AIPMB

Cephalosporins
- Bactericidal and time dependent
- Spectrum
 - Early generation drugs
 - Cephalexin, cefazolin
 - Good: gram-positive bacteria, especially against *Staphylococcus* spp.
 - Limited: gram negative bacteria
 - Later generation drugs
 - Ceftazidime, cefotaxime
 - Improved gram-negative spectrum especially against *Pseudomonas*.
 - Available in injectable formulations only.
- Advantages
 - Bactericidal, gram negative bacteria spectrum (incl. *Pseudomonas*)
 - Good tissue distribution (including bone, CNS)
 - Relatively low toxicity
- Disadvantage
 - Require dosing q4-8h
 - Allergic reactions
 - Cost
- Doses
 - Time dependent and low bioavailability→higher doses and more frequent administration needed for severe infections in immunocompromised birds.
 - Most cephalosporins need to be dosed at 50-100 mg/kg every 4-6 hours to achieve therapeutic plasma levels
 - PK studies
 - Ceftiofur
 - 10mg/kg IM q4h cockatiels and q8h Orange-winged Amazons.
 - Long acting ceftiofur (Excede®) Guinea fowl: 10 mg/kg IM q72h
 - Cefovecin (Convenia®): 1 h dosing interval needed in hens→ not suitable
- Uses
 - Gram positive or anaerobic infections > gram negative infections
 - Bacterial infections of the CNS or bone
 - Severe bacterial infections of respiratory tract
 - Parenteral, oral, nebulization

Sulfonamides +/- combinations (trimethoprim)
- Spectrum
 - Effective against some protozoa, including toxoplasma and coccidia
 - Combination with folate reductase inhibitors such as baquiloprim, ormetoprim or trimethoprim→ bactericidal, broad spectrum (G+/- except *Pseudomonas*)
 - Resistance more common in *E. coli* and *Klebsiella*
- Concentration likely bacteriostatic at the doses used in birds
- Advantages
 - Broad spectrum (G+/-; except *Pseudomonas*)
 - Good tissue distribution (including CNS, eye)
 - Relative low toxicity
 - Oral suspension→ easy to administer
 - Low price
- Disadvantages
 - Bacteriostatic(?) in birds
Side effects

- GI (macaws, turkeys, chickens)
- Renal (with dehydration)
- HSR poultry
- Cannot be used in food producing birds
- Use for longer than 2 weeks may require vitamin supplementation

Doses

- Psittacine empirical dose: 16 mg/kg trimethoprim + 80 mg/kg sulfamethoxazole q12h clinically successful

Uses

- Gram positive and negative infections
- Bacterial dermatitis
- Mild to moderate bacterial infections of the GI or respiratory tract
- Parenteral, oral, nebulization

Tetracyclines

- Bacteriostatic and time dependent
- Spectrum: generally broad spectrum, although overuse in human and veterinary medicine has led to increased resistance
- Advantages
 - Broad spectrum
 - Lipophilic → good tissue distribution
- Disadvantages
 - Reported low plasma concentrations, below MIC for most bacteria → not effective
 - Injectable formulations can cause necrosis at injection site
 - Oral absorption is reduced in the presence of cations such as calcium or magnesium.
 - Prolonged treatment may have catabolic and immunosuppressive effects, reduce normal gut flora, and render the animal more susceptible to opportunistic infections.
 - Oral administration: decreased appetite, vomiting, dysbiosis
 - Hepatotoxic (12.5-25 mg/kg PO q12-24h in lorikeets)
- Doses: use low end of dose range for macaws and cockatoos
- Uses
 - Primarily for treatment of chlamydiosis and mycoplasmosis
 - Doxycycline: most commonly used tetracycline because it is more lipid soluble, readily absorbed after PO administration, and has a prolonged elimination half-life.
 - Parenteral, oral (individual vs. group treatment in the food or water), nebulization

Macrolides

- Clindamycin, azithromycin, tylosin
- Bacteriostatic, bactericidal at higher concentrations for certain antibiotics
- Time dependent
- Spectrum: generally broad spectrum, mostly gram positive and anaerobes
- Advantages
 - Good tissue distribution
 - Effective against Gram positive and anaerobic bacteria
 - Available as an oral suspension
 - SID-EOD administration
- Disadvantage
 - GI disturbance (decreased appetite, vomiting)
- Doses
 - PK macaws 10 mg/kg PO q48h (Carpenter et al, 2005)
- Uses
 - Chlamydiosis
 - Azithromycin 40 mg/kg PO q48h effective in eliminating C. psittaci infection in experimentally inoculated cockatiels (Guzman et al 2010)
Mycoplasmosis (tylosin)
- Anaerobic infections
- Bacterial osteomyelitis (clindamycin)
- Parenteral, oral, nebulization

Methronidazole
- **Advantage**
 - Effective against anaerobic bacteria and protozoa
 - Safe when given PO
 - Availability of oral suspension
- **Disadvantage**
 - Limited to no efficacy against other bacterial

Chloramphenicol
- **Advantage**
 - Broad-spectrum bacteriostatic to bactericidal drug, depending on concentration and bacterial susceptibility
 - Spectrum: aerobic and anaerobic gram-positive and gram-negative bacteria.
- **Disadvantage**
 - Side effects associated with handling chloramphenicol
 - Limited availability
 - Potential nephrotoxicity
 - Bacteriostatic activity
- **Doses**
 - Significant differences in PK between birds and mammals, and between avian species → dose extrapolation between species not recommended
- **Uses**
 - PO, parenteral, nebulization, topical

References and Further Reading

Mayer J, Donnelly T. Clinical Veterinary Advisor. Birds and Exotic Pets. Elsevier, St. Louis, Missouri, 2013 (several chapters)

