AVIAN ORTHOPEDIC SURGERY

Ricardo de Matos, LMV, MSc, DABVP (Avian), DECZM (Avian, Small Mammal)
Department of Clinical Sciences, College of Veterinary Medicine, Cornell University

Learning Objectives

• Review recommendations for initial evaluation and diagnosis of avian patients with suspected fractures
• Review the special considerations for avian bone and fracture healing
• Describe fracture immobilization techniques
 o Non-surgical
 o Surgical
 o Provide examples by affected bone
• Review post-operative care recommendations for avian patients
• Identify and prevent common complications of fracture repair in birds

Initial evaluation

• History
 o Nature of injury
 o Duration problem
 o Bleeding noted
 o Diet/other husbandry issues
 o Concurrent medical problems
• Physical Exam
 o Evaluation from distance: posture, lameness, abnormal wing position
 o Complete examination
 o Proximal to distal evaluation of limbs to prevent further injuries
• Stabilization of the patient
 o Supportive nutrition, temperature and fluid therapy +/- blood transfusion
 o Analgesics (opioids and NSAIDs) +/- prophylactic antibiotic and antifungal treatment
 o Temporary immobilization
 o Wound care (open fractures; careful w/ pneumatic bones!!)
• Diagnostic procedures
 o Under anesthesia when stable
 o Radiographs +/- CT
 o Ultrasound: concurrent tendon injuries
 o Pre-operative blood testing (hemogram, biochemistry panel)
• Formulate treatment plan
 o Consider spp., size, use, concurrent medical problems, finances, DVM experience
 o Fracture repair goals
 ▪ Promote functional use of affected bone
 • Wild Birds: Full Restoration
 • Captive/Companion Birds: restoration to comfortable and pain-free life
 ▪ Share load of bone during healing
 • Rigid stabilization in early stages and w/ limited use coaptation
 • Longitudinal and axial alignment
 ▪ Early return to normal function
 ▪ Low morbidity
 • Pre and post-operative care
 • Minimal surgical manipulation of fragments and damage to soft tissues (atraumatic surgery)
Avian Fracture Repair and Healing

• Challenges
 o Relatively long bones and strong muscles
 o Reduced soft tissue over bones and distal limbs
 ▪ Damage nerves and blood vessels
 ▪ Open fractures
 o Pneumatic bones → thin, brittle cortices
 ▪ Open fractures
 ▪ Decreased holding power for hardware
 o Bipedal locomotion
 ▪ Problem for leg fractures (immediate load bearing required)
 ▪ Advantage for wing fractures
 o Flight requirements: problem for wing fractures
 o Proximity of injury to joints
 o Exposed bone will sequester
 o Limited to no bone grafting options (minimal cancellous bone to harvest)
 o Rapid healing process → immediate immobilization required

• Healing main differences
 o Time
 ▪ Experimental (ulna)
 • Internal fixation: 5 weeks
 • External coaptation: 8 weeks
 ▪ Clinical
 • Internal fixation: 3-4 weeks
 • External coaptation: 4-6 weeks
 o Callus formation periosteal > endosteal surface
 o Blood supply to periosteum from surrounding soft tissues > intramedullary circulation

Methods for fracture immobilization

Cage rest

• Limited use for
 o Fractures of the digits
 o Metabolic bone disease fractures
 o Fractures of non-weight bearing bones in canaries and finches
• Important to limit activity by
 o Reducing photoperiod
 o Housing in aquarium or plastic carrier with no perches

External coaptation

• Indications
 o Distal limb fractures in small birds (cannot hold hardware)
 o If there is no requirement for full flight
 o Temporary stabilization
 o Coracoid fractures
 o Metabolic bone disease fractures
 o High anesthetic risk patients
• Principles
 o Immobilize the joint proximal and distal to the fracture
 o Counteract rotation, bending and compression forces
• Advantages
 o Easy and economic option
• Disadvantages
- Limited to proximal pelvic limb fractures and wing fractures
- Limits “normal” limb use (bulky, joint immobilization)
- Poor alignment and unstable fracture site
- Prolonged use → decreased range of motion of joints, damage to propatagium
- Can be damaged (parrots) or become loose

- Wing
 - Figure of 8 bandage: fractures distal to elbow
 - Body wrap: fractures proximal to elbow
 - Combination

- Pelvic limb
 - Robert Jones (body weight < 500 g)
 - Schroeder-Thomas Splints
 - Tape splint (body weight < 100 g)
 - Tibiotarsal-tarsometatarsal splint
 - Ball bandage

- Healing > 3-4 weeks

- Bandage care
 - Wing fractures
 - Wild birds: PT under anesthesia recommended after 7-10 days, 2-3 times per week
 - Leg fractures
 - Bandages should be replaced 5-7 days after (under anesthesia) or PRN
 - Replace or remove 21 days post-fracture; recheck every 7-15 days after
Surgical fixation

- **Options**
 - External skeletal fixator
 - Intramedullary pin (IM)
 - External skeletal fixator and IM pin tie-in
 - Cerclage
 - Bone plate
 - Open reduction
 - Closed reduction (preferred)

- **Equipment**
 - Hand tools vs. "power" tools
 - IM pins
 - ESF pins
 - Connecting bar
 - Metal
 - Hexalite
 - PMM/bone cement

- **External skeletal fixator (ESF)**
 - Type I, Type II, Type III
 - Advantages
 - Rotational stabilization
 - Maintain length of bone
 - Minimal damage to tissues, blood vessels and fracture site → minimal interference with healing process
 - Disadvantages
 - Weak opposition to bending forces
 - Requires appropriate pin placement and device construction
 - Pin pull-out or loosening occurs easily w/out threaded pins
 - ESF Type I
 - Uses: fractures of the humerus, ulna, metacarpus, femur
 - Partially threaded pins approximately 20% diameter of the bone and through at 30-45° angle
 - At least 2 pins in the proximal and 2 pins in the distal bone fragment

- **Intramedullary pin (IM)**
 - Uses: fractures of the radius and/or ulna, tibiotarsus, coracoid, humerus, metacarpus
 - Advantage: natural curvature of the avian bones facilitates application
 - Disadvantages
 - Only opposes bending forces → Required additional stabilization to limit torsional, compressive and tensile forces
 - If coaptation used for additional stabilization → ankyloses and other problems associated with coaptation
 - Risk joint damage and alter blood circulation and bone healing → should not be used when complete return to function is required
 - General principles
 - Materials: stainless steel vs. titanium vs. plastic/acrylic/PMM rods
 - Diameter 60-70% medullary canal (single vs. multiple pins)
 - Open vs. closed reduction
 - Closed: normograde
 - Open:
 - Retrograde → normograde (direction depends on bone)
 - Pin bending (titanium)

- **Tie-in technique**
 - Technique similar to application IM pin and ESF type-I
Advantages
• Combine advantages of both techniques
• Good fixation w/ normal range of motion of joints

Uses
• Best option for humeral and femoral fractures
• Also applicable to ulna, metacarpal bones and tibiotarsus

General principles
• IM pin: 50-60% diameter of bone
• ESF pins: positive profile thread w/ roughened shafts
• Connecting bar: as for ESF
 o Cerclage: use in birds contraindicated in general since it can cause fissures and further bone fractures
 o Bone plates
 • Advantages
 • Rigid stabilization with minimal callus formation and not affecting joint function
 • Maintain anatomical alignment preventing all types forces
 • More stable → faster healing → earlier return to limb function
 • Well tolerated by birds
 • Disadvantages
 • Requires specialized equipment and hardware
 • Cost and prolonged time of anesthesia
 • Avian bones are brittle and have thin cortices→ difficult holding and risk of iatrogenic fractures
 • Need to be removed when there is minimal soft tissue coverage because plates can conduct cold and lead to deep bone pain (especially in wild birds)

Complications
• Bone fracture
• Bending
• Long bone fractures in birds may require longer plates than similar canine and feline fractures
• Combination IM pin and bone plate reduces internal plate stress

Most case reports in larger species/bones (example: coracoid fractures in bald eagles)
Post-operative care

- **Immediate**
 - Bandage: gauze sponges (ESF, tie-in) and bandage
 - Antibiotics pre and post-operative
 - Analgesics (opioids, NSAIDs)
 - Change bandage (if present) after 24 hours
- **Later**
 - Clean and monitor skin-pin areas
 - Radiographs: post-op, 10, 21, and 35 days
 - Animal rehabilitation protocols 3-5 d post-op
 - Load sharing 21-28 days
 - Destabilize repair devices
- **Animal rehabilitation**
 - Under anesthesia
 - As early as 5-7 days post-op, 2-3X/week
 - Gentle stretch and hold
 - Gentle range of motion

Complications

- Synostosis, infection (bone, joints), implant failure, malunion/non-union, decreased range of motion joints/arthrodesis, pododermatitis

 - **Prevention**
 - Protect and preserve soft tissue during surgery
 - Avoid iatrogenic damage to joints
 - Achieve rotational and longitudinal alignment
 - Achieve early rigid stabilization
 - Allow early return to function
 - Protect contralateral weight-bearing structures
 - Utilize regular schedule of post-op physical therapy

- Pododermatitis
 - **Prevention**
 - Analgesia
 - Adequate immobilization for early return to normal weight bearing
 - Bandage/padding perches/surfaces
 - Opposing foot
 - Ball or foot bandages
 - Expanded, closed-cell polypropylene shoes (EPP, AKA “Fun Noodles”)
Management of specific bone fractures

Coracoid

- External coaptation
 - May be adequate for small birds
 - Proceedings AAV 2009: 99% success rate in raptors with conservative management coracoid luxation or fractures
 - Complications:
 - Malunion and shortened bone
 - Entrapment of tendons or ligaments in the callus
 - Large callus can impinge on local soft tissues (ex: esophagus)
 - Bandage complications (patagium contraction, elbow stiffness, joint ankyloses, muscle atrophy, tendon contracture)
- IM Pin with open reduction
 - Advantages:
 - Better stability and results than external coaptation
 - Cheaper and faster than bone plates
 - Disadvantages:
 - Prolonged recovery (6 months)
 - Still requires external coaptation (w/ all of its complications)
 - Migration of pin to coelomic cavity or shoulder joint
 - Inferior stability to bone plates
- Bone plates
 - Same advantages and disadvantages as described above
 - Use limited to larger birds
 - Case reports
 - JAMS 2005 4 (fracture Bald eagle)
 - JAMS 2007 3 (luxation Bald eagle)
- Luxation of the coracoid attachment to sternum requires surgical correction

Clavicle and scapula

- Less frequent than coracoid fractures
- Treatment
 - Body weight < 300 g: cage rest
 - Body weight > 300 g: body wrap +/- figure 8 bandage

Humerus

- Special anatomical characteristics
 - Proximal end: pectoral crest and bicipital crest
 - Distal end: brachial fossa
- Techniques for fracture immobilization
 - Proximal fractures
 - Large size propatagialis muscle complex → external coaptation may be sufficient for stabilization some cases
 - Tension band + body wrap (if body weight < 300g) or wire application
 - Distal fractures: cross pinning technique with tie in fixator
 - Midshaft fractures: tie-in fixator, ESF type I, IM pin and external coaptation
- Tie-in technique
 - Dorsal approach
 - IM pin
 - Retrograde (open fractures or reduction)
• Pin introduced at the fracture site and driven retrograde, exiting proximal humerus just distal to the shoulder
• Reduce fracture and drive pin into distal fragment
 • Normograde (closed fractures or reduction)
 • Small incision dorsal aspect distal humerus just proximal to lateral/dorsal humeral condyle
 • Caudal retraction triceps tendon ➔ insertion pin normograde direction ➔ reduce fracture ➔ engage cortex proximal humerus at level of the pectoral crest
 • Care to prevent damage to triceps tendon
 o Cross pins (positive profile pins)
 • Distal
 • Placed first
 • Skin incision just proximal to highest point of dorsal condyle
 • Pin driven dorsal/ventral direction through condyles (except distal fractures or spp. with deep intercondylar sulcus ➔ risk entrapment triceps tendon)
 • Engage both cortices
 • Proximal:
 • Fold wing against body for proper alignment
 • Identify site insertion: highest point pectoral crest
 • Drive pin parallel to distal one (engage both cortices)
 o Free proximal end IM pin bent 90° approximately 2 cm from skin and align with ESF pins
 o Connect pins with PMM, hexalite or connecting metal bars

Radius and ulna

• Techniques for fracture immobilization
 o External coaptation
 • Smaller birds, fractures with good alignment and only one bone fractured
 • Proximal radius fractures (larger muscle masses)
 • Synostosis common complication ➔ unable to fly (lift and descend requires radius to rotate around ulna)
 o Internal fixation
 • Indicated for fractures with severe displacement and/or fracture of the 2 bones
 • Techniques
 • IM radius only
 • IM both with external coaptation
 • IM radius and tie in fixator ulna
 • Bone plate (JAMS 2005 3 and JAMS 2008 4)
 o Poor prognosis for fractures close to joint
 o Repair of avulsion fractures olecranon not reported birds
• IM pin alone
 o Radius
 • Placed first, retrograde from fracture site to exit carpus joint (held in flexion during pin placement)
 • Blunt proximal end pin to reduce risk elbow joint damage
 • Reduce fracture and drive pin into proximal fragment
 o Ulna
 • Normograde
 • Insertion point at proximal caudal aspect ulna between shafts of second and third to last secondary feathers (do not pluck secondary flight feathers!!!)
 • Skin incision ➔ pin introduced almost 90° angle caudal bone cortex ➔ gradually reduce angle to align pin with long axis bone ➔ reduce fracture ➔ insert pin to distal fragment
 • Tie in fixator ulna
 o IM pin- as described
 o Cross pins
• Proximal: between proximal end of the ulna and the IM pin
 • Distal: proximal to carpal joint
 o Bend IM pin and attach to cross pins as described above for humerus

Carpometacarpal bones

• Challenges
 o Limited soft tissue structures and blood supply → difficulty and prolonged healing (5 weeks)
 o Open and comminuted fractures common

• Techniques
 o External coaptation with splint
 • Sandwich splint
 • Molded from thermoplastic splint material to fit
 • Affixed to the ventral surface of the metacarpus
 • Hold in place with adhesive tape +/- body wrap
 o ESF Type 1
 • Allows fracture immobilization with no manipulation of comminuted fragments (important for healing)
 • Immobilizing of the wing against body helpful to prevent premature loss of ESF device with wing flapping
 • Asymmetric (proximal and distal fractures)
 • Symmetric (midshaft fractures)
 o Tie in (retrograde IM pin into metacarpus with wrist hold in flexed position)
 o IM pins alone not recommended (no rotational stability)

Femur

• Techniques
 o Mid-shaft fractures
 • Tie in fixator
 • IM pins alone (BW < 100g)
 o Distal or condylar fractures: cross-pinning with or without ESF pin fixation
 o Proximal fractures: tension band wire and pins

• Tie in fixator
 o IM pin inserted proximal fragment → normograde → out lateral and caudal to the hip → normograde → reduce fracture → inserted into distal fragment
 o ESF Positive profile pins
 • Slight cranio-lateral → caudomedial direction to avoid neurovascular bundle
 • Distal: placed first, through the condyles; into lateral condyle
 • Proximal: insert just distal to dorsal acetabular rim; use smaller pin; align with distal pin; difficult to confirm appropriate seating pin but should not have more than 1-2 threaded lengths past medial cortex

Tibiotarsus

• Normal anatomy
 o Fibula attached to tibiotarsus at fibular crest
 o Blood vessels and nerves to limb between fibula and the tibiotarsus above and below the crest → avoid lateral approach to the tibiotarsus distal to the crest
 o Ossified supratendinous bridge over extensor digitorum longus muscle tendon → avoid tendon entrapment
 o Primary loads: compressive

• Fractures
 o Common in raptors, especially newly jessed hawks
 o Often located just distal to fibular crest due to change from an approximately triangular to more round shape bone
 o Transverse fractures
Damage/entrapment tibial and/or fibular nerve common

Techniques
- Tie-in fixator
 - ESF type II
 - Combination of an IM pin or K-wire and external coaptation (BW, 300 g)
 - External coaptation: Robert Jones (<100g), tape splint (<50-75 g)
 - Interlocking nail (JZWM 35(1) 2004 Bald eagle)
 - Plate, IM pin and cerclage wires (JAMS 2007 3 Bald eagle)
 - Ring fixator device for bone transport osteogenesis (JAMS 2008 1 Amazon parrot)
 - Type 1A hybrid (JAMS 2005 Bald eagle)
- ESF type 2
 - Application similar to described for tie in technique
 - Angle proximal pins proximolateral-distomedially to prevent injury to body wall

Tarsometatarsus

- Normal anatomy
 - Variable shape
 - Hawks: long, flat C-shaped cross-section, almost no medullary cavity
 - Parrots: short, round to oval, with medullary cavity
 - Interosseous tendon canal in distal tarsometatarsus to digit 4 for extensor digit IV
 - Dorsal aspect: digit extensor tendons, nerves and artery
 - Ventral aspect: digit flexor tendons
 - Medial aspect: medial metatarsal vein
 - Tibial cartilage
 - Caudal aspect hock joint
 - Gastrocnemius and superficial digit flexor tendons: superficial
 - Deep digit flexor tendons: within cartilage
- Techniques
 - External coaptation:
 - Indicated for most psittacines
 - Robert Jones, tape bandage, tibiotarsus-tarsometatarsus splint
 - ESF Type 2
 - Lateral approach
 - Careful placement hawks: bone shape can result in entrapment flexor tendons
 - Kirschner wires vs. positive profile pins
 - IM pins not recommended due to damage to the flexor tendons

Phalanges

- Closed phalangeal fractures
 - Cage rest (flexor tendons and their sheaths provide good support)
 - Splinting results in the formation of adhesions and a stiff toe.
- Compound fractures commonly result in osteomyelitis, and amputation should be considered
- Dislocations of phalangeal joints: reduced under anesthesia; may need external support
- Damaged collateral ligaments: repaired with 3-0 or 4-0 polyglactin suture.
References and further reading

