Skip to main content
menu sluit menu
Home Home
Login
Main navigation
  • Library
  • Calendar
  • e-Learning
  • News
    • Veterinary News In this section you find veterinary news
    • Recent Additions All content that was recently added to the IVIS library
  • Get involved
    • Donate Support IVIS, make a donation today
    • Media kit Promote your e-learning & events on IVIS
    • Add your e-learning & events to the IVIS calendar
    • Publish on IVIS Publish your work with us
  • About
    • Mission Our Mission Statement
    • What we do More info about IVIS and what we do
    • Who we are More info about the IVIS team
    • Authors See list of all IVIS authors and editors
  • Contact
User tools menu
User tools menu
Main navigation
  • Library
  • Calendar
  • e-Learning
  • News
    • Veterinary News In this section you find veterinary news
    • Recent Additions All content that was recently added to the IVIS library
  • Get involved
    • Donate Support IVIS, make a donation today
    • Media kit Promote your e-learning & events on IVIS
    • Add your e-learning & events to the IVIS calendar
    • Publish on IVIS Publish your work with us
  • About
    • Mission Our Mission Statement
    • What we do More info about IVIS and what we do
    • Who we are More info about the IVIS team
    • Authors See list of all IVIS authors and editors
  • Contact
Follow IVIS
  • Twitter
  • Facebook
Support IVIS

Breadcrumb

  1. Home
  2. Library
  3. Journal of Veterinary Andrology
  4. Journal of Veterinary Andrology - Vol. 2(2) - Jul.-Dec. 2017
  5. Subpopulation Structure and Changes after Cryopreservation of Sperms from High and Low Fertility Water Buffalo
Journal of Veterinary Andrology
Back to Table of Contents
Add to My Library
Close
Would you like to add this to your library?

Get access to all handy features included in the IVIS website

  • Get unlimited access to books, proceedings and journals.
  • Get access to a global catalogue of meetings, on-site and online courses, webinars and educational videos.
  • Bookmark your favorite articles in My Library for future reading.
  • Save future meetings and courses in My Calendar and My e-Learning.
  • Ask authors questions and read what others have to say.
Sign in Register
Comments
Share:
  • Facebook
  • LinkedIn
  • Mail
  • Twitter

Subpopulation Structure and Changes after Cryopreservation of Sperms from High and Low Fertility Water Buffalo

Author(s):

E. Rio S. Maylem, Ma.E. DC...

In: Journal of Veterinary Andrology - Vol. 2(2) - Jul.-Dec. 2017 by Journal of Veterinary Andrology
Updated:
DEC 01, 2017
Languages:
  • EN
Back to Table of Contents
Add to My Library
Close
Would you like to add this to your library?

Get access to all handy features included in the IVIS website

  • Get unlimited access to books, proceedings and journals.
  • Get access to a global catalogue of meetings, on-site and online courses, webinars and educational videos.
  • Bookmark your favorite articles in My Library for future reading.
  • Save future meetings and courses in My Calendar and My e-Learning.
  • Ask authors questions and read what others have to say.
Sign in Register
SHARE:
  • Facebook
  • LinkedIn
  • Mail
  • Twitter
    Read

    ABSTRACT
    The aim of this study was to identify the sperm subpopulation structure in buffalo bulls with high and low fertility and to determine how sperm subpopulations change after semen cryopreservation. Semen was obtained from four bulls with high fertility (HF) and four bulls with low fertility (LF) and was cryopreserved. A total of 64 ejaculates were assessed for their sperm kinematics using computer assisted sperm analyzer (CASA). Ward’s Hierarchical Dendogram and K-Means clustering method were used to identify the subpopulations. In experiment 1, two significantly different (P≤0.05) sperm subpopulations were observed: Subpopulation 1 (SP1): sperms travel longer distances most rapidly and progressively, and Subpopulation 2 (SP2): sperms travel shorter distances slower but highly progressive. A higher percentage of SP1 was found in HF bulls (47.27); whereas, a higher percentage of SP2 was found in LF bulls (54.89). A low negative relationship (r=-0.18) was observed for the fertility level and sperm subpopulation structure. This implies that sperms that travel longer distances most rapidly and progressively (SP1) are most likely associated to high fertility, while sperms that travel shorter distances slower but highly progressive (SP2) are associated with low fertility. In experiment 2, based on the change in SP1 after cryopreservation, significantly higher sperm survival was observed in samples from HF bulls (29.97) as compared to those from LF bulls (31.64). During post thaw, there were more SP1 sperms in samples from HF bulls (27.52) than in those from LF bulls (26.74). Thus, semen containing higher proportion of SP1 sperms are more resistant to cryopreservation and have greater chances of obtaining high fertility. Overall, the identification of sperm heterogeneity in water buffaloes can be associated to sperm survival after cryopreservation and fertility. [...]

    View full text
    Back to Table of Contents
    Add to My Library
    Close
    Would you like to add this to your library?

    Get access to all handy features included in the IVIS website

    • Get unlimited access to books, proceedings and journals.
    • Get access to a global catalogue of meetings, on-site and online courses, webinars and educational videos.
    • Bookmark your favorite articles in My Library for future reading.
    • Save future meetings and courses in My Calendar and My e-Learning.
    • Ask authors questions and read what others have to say.
    Sign in Register
    Comments (0)

    Ask the author

    0 comments
    Submit
    Close
    Would to like to further discuss this item?

    Get access to all handy features included in the IVIS website

    • Get unlimited access to books, proceedings and journals.
    • Get access to a global catalogue of meetings, on-site and online courses, webinars and educational videos.
    • Bookmark your favorite articles in My Library for future reading.
    • Save future meetings and courses in My Calendar and My e-Learning.
    • Ask authors questions and read what others have to say.
    Sign in Register
    About

    Affiliation of the authors at the time of publication

    1College of Arts and Sciences, Central Luzon State University, Science City of Muñoz, Nueva Ecija, Philippines.
    2Reproductive Biotechnology Unit, Philippine Carabao Center National Headquarters and Genepool, Nueva Ecija, Philippines.
    3College of Arts and Sciences, Central Luzon State University, Science City of Muñoz, Nueva Ecija, Philippines.
    4Philippine Carabao Center at Central Luzon State University, Science City of Muñoz, Nueva Ecija, Philippines.

    Copyright Statement

    © All text and images in this publication are copyright protected and cannot be reproduced or copied in any way.
    Related Content

    Readers also viewed these publications

    • Chapter

      Rhamphotheca Structure

      In: Anatomy of Sea Turtles
      FEB 19, 2007
    Back To Top
    Become a member of IVIS and get access to all our resources
    Create an account
    Sign in
    Leading the way in providing veterinary information
    About IVIS
    • Mission
    • What we do
    • Who we are
    Need help?
    • Contact
    Follow IVIS
    • Twitter
    • Facebook
    International Veterinary Information Service (IVIS) is a not-for-profit organization established to provide information to veterinarians, veterinary students, technicians and animal health professionals worldwide using Internet technology.
    Support IVIS
    © 2023 International Veterinary Information Service
    • Disclaimer
    • Privacy Policy