Introduction
Diagnostic and therapeutic arthroscopic surgeries are procedures performed extremely frequently in equine referral practice; and are considered to produce a moderate degree of postoperative inflammatory orthopedic pain. Intraarticular local anesthetics and/or opioids are often used for the management and prevention of pain after arthroscopic surgeries. Limited information is available on the effects of tramadol in horses. The aim of present study was to evaluate the synovial fluid biochemical and cytological changes following intraarticular administration of tramadol.

Materials and Methods
Six adult healthy donkeys were selected after clinical examination. Synovial fluid samples were taken from both middle carpal joints after routine preparation. Tramadol 2 mg and 100 mg lidocaine 2% were administered to the right and left joints respectively. The injected volume of the drugs was corrected by adding normal saline. Synovial fluid collection from the joints was performed at 12, 24, 48 and 192 hours after medications. Cytological examination, total protein, specific gravity, alkaline phosphates (ALP), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), glucose, viscosity and quality of mucin clot were measured. Nonparametric and repeated measure tests were used for data analyses.

Results
Neither detectable lameness nor special side effect was observed throughout the study. Mucin clot quality test and viscosity, the amount of total nucleated cell count, glucose, ALP and LDH revealed no significant differences between various sampling times between tramadol and lidocaine groups (P>0.05). Neutrophil count, total protein, specific gravity and AST activity were significantly different.

Conclusions
Despite mild different results compared to lidocaine, it seems that injection of tramadol into the middle carpal joint has no adverse effects on the synovial fluid composition in this joint. Therefore, it can be considered as a good analgesic with the little side effects and could be used after arthroscopic surgery in horses.
CHAPTER 8
Equine Posters

Further diagnostics
Neurological examination: the mare was slow to resume a normal stance when her hind legs were placed in an abnormal position.
Dental examination and endoscopy of the upper airways proved unremarkable.
Radiography of the atlanto-occipital joint area: revealed fractures of the first and second cervical vertebrae and evidence of cervical instability.

Treatment and prognosis
The mare was deemed unfit for dressage and was kept for breeding.

Conclusion
Horses are frequently punished for “bad behaviour”. These behaviours are frequently due to underlying physical problems and not a “nasty” horse. This case highlights the importance of careful history taking and a thorough veterinary examination with the use of further diagnostics (if necessary) when dealing with equine behaviour problems.

Case history
An eleven-year-old New Forest pony mare presented for aggressive behaviour to humans. The owner described her as being “cross and very irritable” and had taken her to veterinarians and ‘horse whisperers’ for several years.

Physical examination
An attempt to manually palpate the neck and back area resulted in kicking, striking and rearing. This behaviour had frequently been inadvertently reinforced in the past. The pony showed a subtle 1/5 (AAEP scale) RF lameness at the trot on a hard surface at a straight line, on the left circle 2/5 LF and on the right 2/5 RF lame. After a low palmar block RF the pony was sound on the straight line and on the right circle, but the pony became 3/5 LF lame on the left circle.

Further diagnostics
Radiological examination of both distal forelimbs revealed no bony abnormalities. At follow up MRI investigation of the RF foot, a longitudinal tear running from proximo-abaxial (PhII) to disto-axial (PhIII) was found in the medial branch of the deep digital flexor tendon (DDFT tendonitis).

Treatment and prognosis
Behaviour modification (including clicker training), modified shoeing (supportive wedge pad, rolled toe), very light restricted exercise and the temporary use of a NSAID was recommended. The pony’s behaviour significantly improved. The prognosis was guarded as the pony had shown the behaviour and had possibly suffered from the lameness, neck and back pain for a very long-time.

Conclusion
This case highlights the importance of careful history taking and a thorough physical examination with the use of further diagnostics (if necessary) when dealing with “grumpy” behaviour in horses.

RESULTS OF THE ROUTINE COAGULATION PROFILE IN HEALTHY DONKEYS ARE DIFFERENT COMPARED TO HORSES
Francisco Mendoza1 DVM; Rafael Perez-Ecija1 DVM; Luis onreal2 DVM and Jose Estepa1 DVM.
1Dept. Animal Medicine and surgery, University of Cordoba, Rabanales.
Spain
pv2megaf@uco.es

Introduction:
Coagulation disturbances are frequently diagnosed in equids, mainly overall in hospitalized animals, impairing the prognosis and increasing the morbidity and mortality ratios(1,2). Haemostatic reference ranges have not been established for donkeys yet, thus the clinicians extrapolate them from horses.

Proceedings of the European Veterinary Conference - Voorjaarsdagen, 2011 - Amsterdam, Netherlands

Abstracts European Veterinary Conference Voorjaarsdagen 2011
Aim of the study:
The objective of this study was to determine whether reference ranges for the most commonly used coagulation parameters in equine practice are different between healthy donkeys and horses.

Material and methods:
Thirty-eight healthy donkeys and twenty-nine horses, Andalusian breeds, were used. Blood was collected to quantify coagulation and fibrinolytic systems through of platelet count, fibrinogen concentration, clotting times (prothrombin time (PT) and activated partial thromboplastin time (aPTT)), fibrin(ogen) degradation products (FDP) and D-dimers concentrations.

Results and conclusions:
Results demonstrated a decreased (P<0.05) PT (8.71±0.07 seconds) and aPTT (31.90±0.46 seconds) in donkeys compared to horses (9.09±0.16 and 44.53±0.62 seconds, respectively). Moreover, FDP and D-dimers were significantly higher (P<0.05) in donkeys than horses. Data of the present study demonstrate that reference ranges of the most commonly determined hemostatic parameters are different between both species. Thus, the use of normal reference ranges previously reported for healthy horses in donkeys might lead to a misdiagnosis of hypercoagulation and hyperfibrinolitic states in healthy donkeys(3,4,5). In conclusion, this is the first work reporting that healthy donkeys have different reference ranges than horses for the most commonly determined coagulation tests used in equine practice and intensive care units, which could contribute to avoid misdiagnosis and unnecessary treatments in sick donkeys. Further studies are warranted to elucidate the physiological mechanisms of these differences.

References: