We are delighted that the International Pig Veterinary Society Congress 2004, decided to select South Africa as the host country for the 20th IPVS Congress. The Pig Veterinarians of South Africa will ensure that this congress lives up to the best traditions of previous congresses; incorporating an interesting and topical scientific programme, fascinating accompanying persons tours and an excellent social programme, allowing delegates the opportunity to network with their overseas colleagues.

This, the first IPVS congress on the African continent, will undoubtedly be of enormous benefit in generating solutions to the emerging pig veterinary challenges, especially those related to exotic and changing viral diseases, decreased use of antimicrobials and nutritional advances. The congress is important to further pig veterinary science in South Africa, to encourage younger veterinarians to join the pig industry, as a vehicle to generate funds for research and to improve the pig industry in Southern Africa.

South Africa is a magnificent and beautiful country, and offers tourists value for money. Thus, pre and post congress tours will be a major attraction for delegates to come to South Africa. Durban, in KwaZulu Natal, is a vibrant multi-cultured city with magnificent beaches, easily accessible game parks, theme villages and a moderate winter climate making it an ideal tourist destination. We urge our colleagues throughout the world to use this opportunity to get a glimpse of the continent’s rich and fascinating wonders and to enjoy the hospitality of their African friends.

Dr Peter Evans
Chairman: Local Organising Committee: IPVS 2008
SEVEN-YEAR SURVEY OF SUSCEPTIBILITY TO MARBOFLOXACIN OF PATHOGENIC PASTEURELLACEAE STRAINS ISOLATED FROM RESPIRATORY PIG INFECTIONS

M Vallé, F Woehrlé, B Boisramé
Vétoquinol, LURE, France

Introduction
Fluoroquinolones are synthetic antimicrobial agents, which are used in both human and veterinary medicine. A number of EU countries have national surveillance programs to assess pathogenic bacteria susceptibility to antibiotics with different aims (e.g. in Denmark (1), in Sweden (2), in United Kingdom (3)). Such surveys are difficult to compare since there are inevitably differences in sample collection and laboratory methodology. Vétoquinol set up a European surveillance program (France, Germany, Italy, Belgium, Netherlands, Spain, Ireland, United Kingdom) between 1998 and 2004 which consisted in the collection of pathogenic bacteria isolated before treatment from porcine respiratory diseases. The presented survey is carried out using standardised methods of sampling, routine isolation in different laboratories and susceptibility testing in a referenced laboratory. These procedures allowed Vétoquinol to survey, for the first time, the susceptibility of the main pathogenic bacteria isolated from pigs (Pasteurellaceae family strains) to marbofloxacin a 3rd generation fluoroquinolone developed for individual porcine injectable treatment, marketed for 1997.

Materials and Methods
Before any treatment veterinarians took samples (TTA, swab, biological samples) of porcine clinically affected before any treatment. Before any treatment veterinarians took samples (TTA, swab, biological samples) of porcine clinically affected (Actinobacillus pleuropneumoniae (App), and 72 Haemophilus parasuis strains. In this survey, around 75% of the pathogenic bacteria strains isolated from porcine respiratory diseases were Pasteurellaceae followed by around 12 % of S. suis strains and 10% of B. bronchiseptica strains (3 % of others strains). The number of obtained strains in each country did not allow to show significant results for each of them. Due to technical culture difficulties, Mycoplasma spp. strains were not isolated in this survey.

Results
Seven hundred and sixty six pathogenic Pasteurellaceae strains were collected between 1998 and 2004: 480 Pasteurella multocida, 214 Actinobacillus pleuropneumoniae (App), and 72 Haemophilus parasuis strains. In this survey, around 75% of the pathogenic bacteria strains isolated from porcine respiratory diseases were Pasteurellaceae followed by around 12 % of S. suis strains and 10% of B. bronchiseptica strains (3 % of others strains). The number of obtained strains in each country did not allow to show significant results for each of them. Due to technical culture difficulties, Mycoplasma spp. strains were not isolated in this survey.

Susceptibility to marbofloxacin remained very high over years with low MIC90 (see Table 1). No significant change in susceptibility to marbofloxacin of P. multocida strains occurred during these seven years. Some variations have been observed over years (1998-2004) for App and H. parasuis strains mainly due to the too low number of strains collected and technical difficulties of isolation. Nevertheless the susceptibility to marbofloxacin remained very good (Table 1).

The marbofloxacin MICs distribution was bimodal for the Pasteurellaceae with a main very susceptible population around 0.008 - 0.015 µg/ml (modal class) and a second susceptible subpopulation around 0.5 - 1 µg/ml depending to the Pasteurellaceae species.

In 2004, marbofloxacin (MAR) as other major anti-infectives (AMC, XNL, FFC, ENR) was very active against Pasteurellaceae strains. Tetracyclin (DO) appeared a little less active followed by trimethoprim/sulfamet (SXT), macrolides (L and TILM) and aminocyclitol (SPT). Results were comparable to those of the VLA report (3).

Discussion
This European survey has given partial epidemiological information on pathogenic strains isolated from porcine respiratory diseases. The main pathogenic bacteria isolated from porcine respiratory infections were Pasteurellaceae strains (75%). For these strains, marbofloxacin activity remains very good over years, without significant evolution between 93 and 100 %. In 2004, all the main anti-infectives, used in porcine production, remain active on the “first intention” pathogenic strains studied: fluoroquinolones, phenicols and cephalosporines were very active. Marbofloxacin appeared one of the most active anti-infective without inducing development of resistance. The contribution of marbofloxacin treatment to the increase and spread of bacterial resistance has been limited from its launch in 1997.

References
1. DANMAP 2004. (2005) ISSN 1600-2032
4. CLSI (Clinical Laboratory Standards Institute: NCCLS), M 31-A 2nd Ed. (2002)