We are delighted that the International Pig Veterinary Society Congress 2004, decided to select South Africa as the host country for the 20th IPVS Congress. The Pig Veterinarians of South Africa will ensure that this congress lives up to the best traditions of previous congresses; incorporating an interesting and topical scientific programme, fascinating accompanying persons tours and an excellent social programme, allowing delegates the opportunity to network with their overseas colleagues.

This, the first IPVS congress on the African continent, will undoubtedly be of enormous benefit in generating solutions to the emerging pig veterinary challenges, especially those related to exotic and changing viral diseases, decreased use of antimicrobials and nutritional advances. The congress is important to further pig veterinary science in South Africa, to encourage younger veterinarians to join the pig industry, as a vehicle to generate funds for research and to improve the pig industry in Southern Africa.

South Africa is a magnificent and beautiful country, and offers tourists value for money. Thus, pre and post congress tours will be a major attraction for delegates to come to South Africa. Durban, in KwaZulu Natal, is a vibrant multi-cultured city with magnificent beaches, easily accessible game parks, theme villages and a moderate winter climate making it an ideal tourist destination. We urge our colleagues throughout the world to use this opportunity to get a glimpse of the continent’s rich and fascinating wonders and to enjoy the hospitality of their African friends.

Dr Peter Evans
Chairman: Local Organising Committee: IPVS 2008
DETECTION OF ANTIBODIES AGAINST STREPTOCOCCUS SUIS CAPSULAR TYPE 2 IN CHINA USING AN INDIRECT ELISA

J ML Jin, A Zhang, CAO Kang, J Shi, PEI Zheng, J Tu, BIN Wu, HC Chen
Huazhong Agricultural University, WUHAN, China

Introduction
Disease of S. suis-2 had broken out in Sichuan province in China in June 2005. More than 500 pigs died result from this disease up to August. During this time, 198 peoples were infected and 38 people died, who had kept in contact with diseased pigs.

The objectives of this study were: (1) to standardize a purified capsular polysaccharide antigen-based indirect ELISA for detection of antibodies against S. suis-2; (2) to investigate the infection of S. suis-2 on pigs using this standardized method in China.

Materials and Methods
One strain of S. suis type 2, named LT-1, was isolated by and kept at the Unit of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University. Swine hyperimmune sera against S. suis-2 were produced in our laboratory.

A total of 22 piglets were randomly divided in four groups. 10 piglets (group 1) were immunized intramuscularly with inactive S.suis-2 contained 3×10^8 CFU mixed in oil adjuvant. 4 piglets (group 2) and 4 piglets (group 3) were immunized with S.suis-2 (2×10^8 CFU) mixed with oil adjuvant or Al(OH)₃ adjuvant, respectively. The rest 4 piglets (group 4) were mock injected with PBS to serve as negative controls. Four weeks later after immunization, 4 piglets (group 1), 2 piglets (group 2), 2 piglets (group 3), and 2 piglets (group 4) were inoculation with 10×LD₅₀ S. suis-2. The rest animals were boosted with the antigen as same as the first immunization. Sera samples were collected at a week interval until 8 weeks when all animals were inoculation with 10×LD₅₀ bacteria.

A total of 918 clinical serum samples were collect in 11 provinces (80 for Anhui, 21 fro Fujian, 9 for Guangdong, 13 for Guangxi, 6 for Hebei, 150 fro Hunan, 438 for Hubei, 89 for Henan, 10 for Jiangxi, 18 for Sandong, and 84 fro Sichuan) during the outbreak of S. suis-2 in Sichuan, 2005.

Results and Discussion
The purpose of this study was to develop a CPS-based indirect ELISA to detect of porcine antibody against S.suis-2. It had shown no cross-reaction with a broad of serum samples against PRV, PPV, HCV, PCV, PRRSV, FMDV, JEV, APP, HPS, Escherichia coli (O8, H7, O157, K88), Saimonella, Swine pasteurellosis, Swine mycoplasmal pneumonia, and Equine strangles. The cut-off level was 0.35.

In the first inoculation on the forth week, 2 pigs in the control group (0.266 and 0.189) died within 24 hours, and 4 pigs from the first group (ELISA readings were 0.163, 0.715, 0.395, and 0.249). 2 pigs in the second group (0.269 and 0.303), and 2 pigs in the third group (0.32 and 0.454) died at 24-48h, except for one pig in the group 1 (0.715). This pig was shown slightly gammy, and recovered after 48h. In the second inoculation after 8 weeks, pigs in group 4 (0.173 and 0.263) died within 48h. Both of two pigs in the third group (0.460 and 0.574) died from 48h to 72h, but 6 pigs in the first group (0.609, 0.91, 0.85, 0.504, 0.76 and 1.069) and 2 pigs in the second group (0.665 and 0.788) were survived and had shown no clinical signs except one pig (0.504) which had shown gammy. These results indicated the ELISA was a suitable tool for monitoring the swine antibody against S.suis-2. It was estimated that pigs were likely to be protected from S. suis-2 infection if the CPS-ELISA readings were higher than 0.6.

As no vaccine were applied protect pigs from S.suis-2 in China, so the results of the CPS-based indirect ELISA could reflect the infection of S.suis-2. 519 (56.5%) out of the 918 serum samples were positive tested by the ELISA, and the results indicated that the S. suis-2 were distributing widely in China.

Figure 1 Mean ELISA readings of swine serum samples immunized with inactive vaccine against S.suis-2