Carbohydrates and glycogene loading

by T. Ivers
Equine Racing Systems, Inc., USA.

Carbohydrates in Performance Horses

The substrates for athletic performance in the horse, the human, the rat, and the elephant are all the same: carbohydrate-derived, protein-derived or various forms of fat. That is to say, the horse is not from Mars. The horse is a mammal, with mammalian energetics. In this regard, there is no need to reinvent the known science to fit the horse.

The literature suggests that carbohydrate-derived muscle fuels are the dominant factor in both power production and fatigue resistance, and this has proven true in practical application, from high speed racehorses to 100-mile endurance horses--just as the literature from human exercise science has predicted.

Here is an economic paradigm that is reflected, in substance if not scale, throughout the world of performance horses: The Thoroughbred that consistently delivers a racing mile in one minute and thirty-seven seconds is a $30,000 horse. The Thoroughbred that consistently delivers a 1:33 mile is worth many millions of dollars. In short, improved performance is a tremendous economic lever in our world, as it is in every athletic endeavor. Those of us involved in providing support services to the performance horse world must focus primarily on performance, consistency, and longevity. Proper use of carbohydrate in the diet can be an extremely productive tool.

Carbohydrate and Fatigue Resistance

In human athletes, muscular fatigue reduces performance in athletes competing in events lasting from 10 seconds to several hours. The whole thrust of training and nutritional protocols focuses on reducing or delaying the onset of fatigue. In performance horses the problem is more severe because not only does fatigue lose races, but it leads to injury. The biomechanics of the horse are such that muscle fatigue results in changes in gait and lower leg posture which in turn predispose the animal to a variety of career-ending injuries, from bowed tendons and torn suspensories to chips and fractures and joint deterioration.

For decades it has been thought that the primary culprit in the cause of fatigue in race horses is lactic acid buildup. It was also thought that lactic acid production was due to a lack of oxidation potential at the muscle cell level. Academic research tended to support these conclusions because elite athletes were shown to have higher lactic acid thresholds (VLA4) than those with less training or inferior oxidative delivery/uptake. For decades, then, training protocols and nutritional supplementation--and even illegal drugging--focused on the oxidative side of the equation--
bigger, more efficient hearts, expanded plasma volume, expanded capillarization, increased red cell production, increased mitochondrial density. All of these factors could be manipulated through sophisticated conditioning routines and supportive nutrition.

Digging deeper into the substrate aspect of fatigue resistance, we've recently seen a number of papers that come to similar conclusions as the following paper.

T Reilly, V Woodbridge
Effects of moderate dietary manipulations on swim performance and on blood lactate-swimming velocity curves
International Journal of Sports Medicine, 1999, Vol 20, Iss 2, pp 93-97Georg Thieme Verlag, P O Box 30 11 20, D-70451 Stuttgart, Germany

The results indicate that a moderate reduction in CHO intake alters swimming performance adversely whereas a moderate elevation in CHO intake above the normal diet improves performance. The dietary manipulations affected the response of blood lactate to both submaximal and maximal swimming velocities. The observations highlight the limitations of applying lactate response curves to swim training.

The investigators are concerned that a high carbohydrate diet interferes with their testing for performance capabilities. The athletes fail the VLA4 test but perform better—a “paradox” to these researchers. This parallels our experience on the racetrack with "glycogen loaded" horses.

Seven years ago, I was called in as a consultant to determine the cause of bad racing performance in a horse named Acey Mack, racing in Portland Oregon. For several races in a row, at 6 furlongs, this horse would come around the turn in front only to stop so badly that the horses behind him had to get out of his way as he backed through them. He'd finish last or next to last. An extremely complete diagnostic workup was performed, including post-race blood analysis, to no avail. Nothing was wrong with this horse--he wasn't bleeding, had no airway obstructions, no fractures, no abnormal blood parameters, no heart problems. His immediate post race blood lactate was 22 mmol and his post race CK was 350.

We ran the horse back one week later, but during that week, we "glycogen loaded" him—a process that consisted of his normal ration supplemented with a 4 ounce dose, 3 times a day, of a maltodextrin/chromium polynicotinate powder over a period of four days, including the next race day. In this race, he was second by a nose--an estimated performance improvement of 15 lengths according to Daily Racing Form charts. The next week he was second by a nose again. Then he won four races in a row, racing weekly for the most part. Blood was sampled immediately post race after the first glycogen loaded race. CK was 250, lactic acid was "out the roof"--greater than 35 mmol.

Thus, the "paradox" of no fatigue with very high lactate numbers in the face of greatly improved performance. We are led to the conclusion that 1) lactic acid buildup has minimal impact on fatigue, 2) higher levels of stored muscle glycogen will result in more glycogen being used in a
race and result in higher lactate production, 3) in spite of higher lactate levels, the extra available substrate results in greatly improved racing performance.

Of course, Acey Mack represents "one-rat research". In the seven intervening years, several thousand more "rats" have demonstrated decided benefits from this "glycogen loading" protocol.

A Central Problem

In the early days of our "applied research" on the racetrack using glycogen loaders we ran into a serious problem. For some reason, unknown to us at the time, about 10% of the horses we glycogen loaded delivered the very worst performance of their lives. They ran "flat". Our first guess as to the etiology of this disastrous result was that something else that was being given to the horses was reacting poorly with the glycogen loader. There was no health threat--the horses would come out of their poor races happy and healthy--and apparently "ready to race again, right now".

The story of how we eventually solved this problem is long and tedious and full of trial and error- I'll cut to the chase: If, at post time, the horse's blood glucose is either crashing or at a low point, he will race "flat"--just not be capable of making competitive racing speeds. The solution is to ensure that the animal's blood glucose is elevated, and not crashing, at post time. Two pounds of grain, fed two hours out from post time, completely eliminates this problem.

Why does this phenomenon occur? We know that it happens with non-glycogen loaded horses as well. If a trainer's routine is that every horse gets fed at 11 AM on raceday, and some horses race at 1:00 in the afternoon and others race at 5 PM, about 10% of those racing later will suffer from the same "flatness" as do the glycogen loaded horses. The trainer will say, "He wasn't himself today", or "He just didn't fire". In some stables, this has led to running glucose response curves on every horse in the stable in order to determine precisely what the blood glucose will be at post time in the individual horse.

It is my unproven theory that at the time the rider pushes the "go" button, coming out of the starting gate, and demanding a sudden 110% effort, the central nervous system takes a quick survey of available survival fuel--blood glucose. If there is a CNS-perceived blood glucose crisis, then the CNS inhibits muscle firings. We know that the CNS is capable of this kind of inhibition- -Guezennec (2000) elucidates at least one mechanism. The factors that trigger this action are yet to be catalogued in the literature.

Loading Versus Supplementation

Some equine events require lower levels of muscular activity and increased precision in skilled performance (dressage). Others combine skills with tests of fitness (eventing). Still others demand relatively low level muscular performance for extended periods of time (endurance). We
have found that a loading protocol used prior to skills competition typically does more harm than good. The horse has too much energy and makes enthusiastic errors. But in a 3 day event, beginning an abbreviated loading protocol immediately after the dressage section should produce a beneficial result as long a proper timing considerations are observed.

A similar problem is encountered when attempting to glycogen load for endurance horse competition. In this case, if you begin a 100 mile race with a very enthusiastic, bursting with energy horse, The horse either goes too fast or spends a lot of effort fighting with the rider--you soon run into elevated body temperatures and dehydration--this is the worst possible scenario for the beginning of a 7½ to 14 hour competition.

We are now supplementing fact-acting carbohydrates all along the way--4 ounces of the same glycogen loader formula mentioned above every 1½ hours, beginning with one dose 15 minutes before the start of each loop. (An endurance race might consist of approximately 5 loops of, to round out the numbers, 20 miles each, with rest periods and veterinary checks between those loops). Water and electrolytes are also given periodically throughout the ride. In these contests, a large percentage of the competitors is unable to finish--many simply "run out of gas" and cannot press on; others run headlong into severe metabolic distress and must be treated quickly with IV fluids. Many of these latter are demonstrating very low blood glucose at the time they are pulled from competition.

Those horses that are properly supplemented with carbohydrates (and electrolytes and water, of course) tend to be enthusiastic performers to the end of the contest and pass veterinary checks with ease--barring physical injury. Those that are improperly supplemented with the loader formula crash, often sooner than the others that were not supplemented. Improper supplementation occurs when the supplement is not fed frequently enough or when it is stopped halfway through the race for one reason or another. Thus, if you are going to supplement fast-acting carbohydrate during an endurance contest, you have to do it frequently and you cannot stop until the contest has finished.

So, 4 ounces (128 gm) of maltodextrin/chromium fed every 1.5 hours (perhaps as much as 40 ounces in a 100 mile event) is ergogenic in 750 to 1000 lb horses exercising for hour after hour at heart rates typically ranging between 115 and 145. Dehydration and hyperthermia are not problems that these supplemented horses face--again, given proper electrolyte and water maintenance (hyperhydration in the days leading up to the event also appears productive).

Those are the well-documented results from the "coaches and athletes" in the field. But can we explain why, scientifically? Does the literature offer a hint as to why a primarily aerobic and fat-based substrate metabolism would be enhanced by frequent carbohydrate supplementation?

The first thing we see in the literature are numerous studies supporting both glycogen loading prior to endurance competition and frequent "sports drink" (water, glucose and electrolytes) intake during competition in human athletes. These protocols are clearly ergogenic.
Let's look at the available substrates. Muscle glycogen, liver glycogen, stored intramuscular di- and triglycerides, blood glucose, protein, and adipose tissue in addition to gut contents of fiber. In comparison to the energy available from these sources, even 40 ounces of "loader" or lesser amounts of "sports drink" glucose in human athletes, seems insignificant as a working substrate. Something else is happening.

One thing we know is happening because of field studies is that the rate and quantity of loader dosage will maintain an elevated blood glucose throughout these endurance races. In fact, some tests have shown a continuous rise in blood glucose as the event grinds on. From the science we know that elevated glucose means elevated insulin and that in turn results in a decided inhibition of lipolysis. So, with carbohydrate supplementation, adipose tissue becomes a less important player in the working substrate mix.

However, the stored muscle fats, the di- and triglycerides, are always readily available and probably contribute greatly to the exercise energy pool at these low intensities. And recent science is hinting that these "fats" are somewhat hybrid in form--not quite true fats, not quite sugars. But fast-acting, nevertheless. And I'm old enough to remember the old adage "fat burns on the flame of glycogen". Meaning that once muscle glycogen is depleted, the performance is over, no matter how much fat is still available. And, once blood glucose is gone, the Central Nervous System dies. Before that happens, though, the CNS will shut down the activities of all the other organs to preserve fuel for itself--starting with the working muscles. So the glucose-depleted athlete comes to a near standstill.

We know, too, that part of the ergogenic effect of carbohydrate supplementation in human athletes is the beneficial effect on "perceived exertion". That is, the athlete feels better with an elevated blood glucose. In fact, there is evidence from the higher intensity middle distance events, 5K and 10K runners, that "hitting the wall" of fatigue occurs as carbohydrate-based substrates are depleted to the extent that the body makes a concerted attempt to switch substrate metabolism toward fats in an attempt to allow glycogen/glucose sparing and give the liver time to regenerate glucose through gluconeogenesis and protein catabolism (blood ammonia levels track well with this type of fatigue).

Given adequate water and electrolyte intake, if we can maintain elevated blood glucose during an extended endurance race, we can prevent a "crash" in performance by maintaining a carbohydrate-driven metabolism.

Safety in Feeding Carbohydrates

To date we have experienced no adverse reactions to sometimes very large carbohydrate supplementations. No tying up, no colic, no laminitis, no induced diabetes. We use a longer chain maltodextrin in order to smooth out the glucose response curves from doses of glycogen loaders. We add chromium so as to help avoid overloading the insulin system.
We advise our clients to feed normal balanced rations, spread out over several feedings a day and consisting of a 50-50 concentrate/forage intake--primarily grass hays for the forage. The highest grain intake I've observed was 26 pounds of mixed grains a day, spread over five feedings, in a mare named Stanerra, who won the Japan Cup, among other Grade I stakes. She consumed a like amount of hay. Her workload was strenuous--up to 15 miles a day.

Our generalized rule as far as daily carbohydrate feeding is concerned is to "feed the work". But the daily intake remains constant, with no half-feed days and full-feed days. We avoid days off, where the horse performs no exercise, particularly with racing-fit horses. We try to ensure that the horse either gains or maintains body weight throughout the conditioning and competition processes. In some stables, the horses are weighed every day. The recovery/supercompensation cycle tracks with body weight fluctuations.

References

DJ Angus, M Hargreaves, J Dancey, MA Febbraio
Effect of carbohydrate or carbohydrate plus medium-chain triglyceride ingestion on cycling time trial performance

DJ Angus, MA Febbraio, D Lasini, M Hargreaves
Effect of carbohydrate ingestion on glucose kinetics during exercise in the heat

J Bangsbo, P Krustrup, J GonzalezAlonso, B Saltin
ATP production and efficiency of human skeletal muscle during intense exercise: effect of previous exercise

PR Below, R Morarodriguez, J Gonzalezalonso, EF Coyle
Fluid and Carbohydrate Ingestion Independently Improve Performance During 1-H of Intense Exercise

BC Bergman, MA Horning, GA Casazza, EE Wolfel, GE Butterfield, GA Brooks
Endurance training increases gluconeogenesis during rest and exercise in men
American Journal of Physiology - Endocrinology and Metabolism, 2000, Vol 278, Iss 2, pp E244-E251

M Bonifazi, F Sardella, C Lupo
Preparatory versus main competitions: differences in performances, lactate responses and
pre-competition plasma cortisol concentrations in elite male swimmers
European Journal of Applied Physiology, 2000, Vol 82, Iss 5-6, pp 368-373

AN Bosch, SC Dennis, TD Noakes
Influence of Carbohydrate Ingestion on Fuel Substrate Turnover and Oxidation During Prolonged Exercise

JL Bowtell, K Gelly, ML Jackman, A Patel, M Simeoni, MJ Rennie
Effect of different carbohydrate drinks on whole body carbohydrate storage after exhaustive exercise

JF Brun, M Dumortier, C Fedou, J Mercier
Exercise hypoglycemia in nondiabetic subjects

SR Bullimore, JD Pagan, PA Harris, KE Hoekstra, KA Roose, SC Gardner, RJ Geor
Carbohydrate supplementation of horses during endurance exercise: Comparison of fructose and glucose
Journal of Nutrition, 2000, Vol 130, Iss 7, pp 1760-1765

LM Burke, DJ Angus, GR Cox, NK Cummings, MA Febbraio, K Gawthorn, JA Hawley, M Minehan, DT Martin, M Hargreaves
Effect of fat adaptation and carbohydrate restoration on metabolism and performance during prolonged cycling
Journal of Applied Physiology, 2000, Vol 89, Iss 6, pp 2413-2421

LM Burke
Nutritional needs for exercise in the heat
Comparative Biochemistry and Physiology A - Molecular and Integrative Physiology, 2001, Vol 128, Iss 4, pp 735-748

JA Carrithers, DL Williamson, PM Gallagher, MP Godard, KE Schulze, SW Trappe
Effects of postexercise carbohydrate-protein feedings on muscle glycogen restoration

EF Coyle, AE Jeukendrup, MC Oseto, BJ Hodgkinson, TW Zderic
Low-fat diet alters intramuscular substrates and reduces lipolysis and fat oxidation during exercise
AJ Davie, DL Evans, DR Hodgson, RJ Rose
Effects of muscle glycogen depletion on some metabolic and physiological responses to submaximal treadmill exercise

TL Dutka, GD Lamb
Effect of lactate on depolarization-induced Ca2+ release in mechanically skinned skeletal muscle fibers

P Ebeling, JA Tuominen, ML Laipio, MA Virtanen, E Koivisto, VA Koivisto
Carbohydrate depletion has profound effects on the muscle amino acid and glucose metabolism during hyperinsulinaemia
Diabetes Obesity & Metabolism, 2001, Vol 3, Iss 2, pp 113-120

M Echegaray, LE Armstrong, CM Maresh, D Riebe, RW Kenefick, JW Castellani, S Kavouras, D Casa
Blood glucose responses to carbohydrate feeding prior to exercise in the heat: Effects of hypohydration and rehydration

MA Febbraio
Alterations in energy metabolism during exercise and heat stress
Sports Medicine, 2001, Vol 31, Iss 1, pp 47-59

MA Febbraio, A Chiu, DJ Angus, MJ Arkinstall, JA Hawley
Effects of carbohydrate ingestion before and during exercise on glucose kinetics and performance
Journal of Applied Physiology, 2000, Vol 89, Iss 6, pp 2220-2226

Geelen, WL Jansen, MJH Geelen, MMS vanOldruitenborghOosterbaan, AC Beynen
Lipid metabolism in equines fed a fat-rich diet
International Journal for Vitamin and Nutrition Research, 2000, Vol 70, Iss 3, pp 148-152

RJ Geor, KW Hinchcliff, RA Sams
Glucose infusion attenuates endogenous glucose production and enhances glucose use of horses during exercise

LB Gladden
Muscle as a consumer of lactate

JH Goedecke, AS Gibson, L Grobler, M Collins, TD Noakes, EV Lambert
Determinants of the variability in respiratory exchange ratio at rest and during exercise in trained athletes

BH Goodpaster, DL Costill, WJ Fink, TA Trappe, AC Jozsi, RD Starling, SW Trappe
The Effects of Preexercise Starch Ingestion on Endurance Performance

CY Guezennec
Central fatigue: electrophysiology and neurochemistry
Hawley JA, Schabort EJ, Noakes TD, Dennis SC.
Sports Med 1997 Aug;24(2):73-81

Effect of altering substrate availability on metabolism and performance during intense exercise
British Journal of Nutrition, 2000, Vol 84, Iss 6, pp 829-838

JW Helge
Adaptation to a fat-rich diet - Effects on endurance performance in humans
Sports Medicine, 2000, Vol 30, Iss 5, pp 347-357

DA Henson, DC Nieman, SL NehlsenCannarella, OR Fagoaga, M Shannon, MR Bolton, JM Davis, CT Gaffney, WJ Kelln, MD Austin, JME Hjertman, BK Schilling
Influence of carbohydrate on cytokine and phagocytic responses to 2 h of rowing
Medicine and Science in Sports and Exercise, 2000, Vol 32, Iss 8, pp 1384-1389

RC Hill, DD Lewis, KC Scott, M Omori, M Jackson, DA Sundstrom, GL Jones, JR Speakman, CA Doyle, RF Butterwick
Effect of increased dietary protein and decreased dietary carbohydrate on performance and body composition in racing Greyhounds

WL Jansen, J VanderKuilen, SNJ Geelen, AC Beynen
The effect of replacing nonstructural carbohydrates with soybean oil on the digestibility of fibre in trotting horses

The effect of medium-chain triacylglycerols on the blood lipid profile of male endurance runners

M Krssak, KF Petersen, R Bergeron, T Price, D Laurent, DL Rothman, M Roden, GI Shulman
Intramuscular glycogen and intramyocellular lipid utilization during prolonged exercise and recovery in man: A C-13 and H-1 nuclear magnetic resonance spectroscopy study
Journal of Clinical Endocrinology and Metabolism, 2000, Vol 85, Iss 2, pp 748-754

DK Levenhagen, JD Gresham, MG Carlson, DJ Maron, MJ Borel, PJ Flakoll
Postexercise nutrient intake timing in humans is critical to recovery of leg glucose and protein homeostasis

P Lopez, M Ledoux, DR Garrel
Increased thermogenic response to food and fat oxidation in female athletes: relationship with VO2max

DM Maffucci, RG McMurray
Towards optimizing the timing of the pre-exercise meal
Full source International Journal of Sport Nutrition, 2000, Vol 10, Iss 2, pp 103-113

D Matthys, W Derave, P Calders, JL Pannier
Carbohydrate availability affects ammonemia during exercise after beta(2)-adrenergic blockade
Medicine and Science in Sports and Exercise, 2000, Vol 32, Iss 5, pp 940-945

L Messonnier, H Freund, L Feasson, F Prieur, J Castells, C Denis, MT Linossier, A Geyssant, JR Lacour
Blood lactate exchange and removal abilities after relative high-intensity exercise: effects of training in normoxia and hypoxia

Y Nishida, A Kiyonaga, Y Higaki, M Shindo, K Tokuyama, Y Sato, K Fujimi, H Tanaka
Effect of mild exercise training on glucose effectiveness in healthy men
Diabetes Care, 2001, Vol 24, Iss 6, pp 1008-1013

A Miura, H Sato, H Sato, BJ Whipp, Y Fukuba
The effect of glycogen depletion on the curvature constant parameter of the power-duration curve for cycle ergometry
Ergonomics, 2000, Vol 43, Iss 1, pp 133-141

KH Myburgh, A Viljoen, S Tereblanche
Plasma lactate concentrations for self-selected maximal effort lasting 1 h
Medicine and Science in Sports and Exercise, 2001, Vol 33, Iss 1, pp 152-156

TD Noakes
Physiological models to understand exercise fatigue and the adaptations that predict or enhance athletic performance

BK Pedersen, JW Helge, EA Richter, T Rohde, B Kiens
Training and natural immunity: effects of diets rich in fat or carbohydrate
European Journal of Applied Physiology, 2000, Vol 82, Iss 1-2, pp 98+

FX Pizza, MG Flynn, BD Duscha, J Holden, ER Kubitz
A Carbohydrate Loading Regimen Improves High-Intensity, Short-Duration Exercise Performance

I Pokora, R Grucza
Effects of low-carbohydrate diet on thermoregulatory responses to graded exercise in men
Biology of Sport, 2000, Vol 17, Iss 4, pp 277-290

GS Posterino, TL Dutka, GD Lamb
L(+) -lactate does not affect twitch and tetanic responses in mechanically skinned mammalian muscle fibres

TB Price, D Laurent, KF Petersen, DL Rothman, GI Shulman
Glycogen loading alters muscle glycogen resynthesis after exercise

BB Rasmussen, KD Tipton, SL Miller, SE Wolf, RR Wolfe
An oral essential amino acid-carbohydrate supplement enhances muscle protein anabolism after resistance exercise
Journal of Applied Physiology, 2000, Vol 88, Iss 2, pp 386-392

BB Rasmussen, KD Tipton, SL Miller, SE Wolf, RR Wolfe
An oral essential amino acid-carbohydrate supplement enhances muscle protein anabolism after resistance exercise
Journal of Applied Physiology, 2000, Vol 88, Iss 2, pp 386-392

LHG Rauch, AN Bosch, TD Noakes, SC Dennis, JA Hawley
Fuel Utilization During Prolonged Low-to-Moderate Intensity Exercise When Ingesting Water or Carbohydrate

LHG Rauch, I Rodger, GR Wilson, JD Belonje, SC Dennis, TD Noakes, JA Hawley
The Effects of Carbohydrate Loading on Muscle Glycogen-Content and Cycling Performance
T Reilly, V Woodbridge
Effects of moderate dietary manipulations on swim performance and on blood lactate-swimming velocity curves
Georg Thieme Verlag, P O Box 30 11 20, D-70451 Stuttgart, Germany

Rico-Sanz J, Zehnder M, Buchli R, Dambach M, Boutellier U.
Muscle glycogen degradation during simulation of a fatiguing soccer match in elite soccer players examined noninvasively by 13C-MRS.

JD Rouillon, R Candau
Muscle fatigue: biological mechanisms and subcellular spaces

C SchmitzPeiffer
Signalling aspects of insulin resistance in skeletal muscle: mechanisms induced by lipid oversupply
Cellular Signalling, 2000, Vol 12, Iss 9-10, pp 583-594

G Schlabach
Carbohydrate Strategies for Injury Prevention
Journal of Athletic Training, 1994, Vol 29, Iss 3, pp 244

RG Shulman, DL Rothman
The "glycogen shunt" in exercising muscle: A role for glycogen in muscle energetics and fatigue

RJ Snow, MF Carey, CG Stathis, MA Febbraio, M Hargreaves
Effect of carbohydrate ingestion on ammonia metabolism during exercise in humans

GR Steenge, EJ Simpson, PL Greenhaff
Protein- and carbohydrate-induced augmentation of whole body creatine retention in humans

The effect of a carbohydrate loading on running performance during a 25-km treadmill time trial by level of aerobic capacity in athletes.

H Tanaka, M Sakamoto, Y Nishida, A Kiyonaga, Y Higaki, K Tokuyama, M Shindo
Effects of mild exercise on glucose effectiveness
Exercise for Preventing Common Diseases, 1999, pp 14-21

KD Tipton, RR Wolfe

Exercise, protein metabolism, and muscle growth

SP Tokmakidis, KA Volaklis

Title Pre-exercise glucose ingestion at different time periods and blood glucose concentration during exercise
Full source International Journal of Sports Medicine, 2000, Vol 21, Iss 6, pp 453-457

OK Tsintzas, C Williams, R Singh, W Wilson, J Burrin

Influence of Carbohydrate Electrolyte Drinks on Marathon Running Performance

K Tsintzas, C Williams, D ConstantinTeodosiu, E Hultman, L Boobis, P Greenhaff

Carbohydrate ingestion prior to exercise augments the exercise-induced activation of the pyruvate dehydrogenase complex in human skeletal muscle
Experimental Physiology, 2000, Vol 85, Iss 5, pp 581-586

G VanHall, SM Shirreffs, JAL Calbet

Muscle glycogen resynthesis during recovery from cycle exercise: no effect of additional protein ingestion

G VanHall

Lactate as a fuel for mitochondrial respiration

J Vissing, U Gansted, B Quistorff

Exercise intolerance in mitochondrial myopathy is not related to lactic acidosis

JL Walker, GJF Heigenhauser, E Hultman, LL Spriet

Dietary carbohydrate, muscle glycogen content, and endurance performance in well-trained women

SH Wong, C Williams, N Adams

Effects of ingesting a large volume of carbohydrate-electrolyte solution on hydration during recovery and subsequent exercise capacity

SH Wong, C Williams
Influence of different amounts of carbohydrate on endurance running capacity following short term recovery
International Journal of Sports Medicine, 2000, Vol 21, Iss 6, pp 444-452

M Zehnder, J RicoSanz, G Kuhne, U Boutellier
Resynthesis of muscle glycogen after soccer specific performance examined by C-13-magnetic resonance spectroscopy in elite players