Haemosporidian Parasites in Blood Smears of Sparrowhawks (Accipiter nisus, Falconiformes: Accipitridae) in Northeastern Turkey

Balkaya, I.,1* Oruc, E.,2,3 Guven, E.1 and Avcıoğlu, H.1
1 Department of Parasitology, Faculty of Veterinary Medicine University of Atatürk, Erzurum, Turkey.
2 Department of Pathology, Faculty of Veterinary Medicine University of Atatürk, Erzurum, Turkey.
3 Department of Pathology, Faculty of Veterinary Medicine, Kyrgyzstan - Turkey Manas University, Bishkek, Kyrgyzstan.

* Corresponding Author: Ibrahim Balkaya, Atatürk University, Faculty of Veterinary Medicine, Department of Parasitology, Erzurum, Turkey. Tel: +904422315532. E-mail: balkayaibrahim@hotmail.com

ABSTRACT
This preliminary study was aimed at determining the occurrence of haemosporidian parasites in the blood of sparrowhawks. For this purpose, blood samples were prepared from 9 sparrowhawks. All birds had been collected from different areas of Northeast Turkey. Blood smears were stained with 5% Giemsa solution and examined under the light microscopy. A total of 7 individuals were infected (77.8%). Haemoproteus spp., Leucocytozoon spp. and Plasmodium spp. were detected in 5 (55.6%), 6 (66.7%) and 4 (44.4%) birds, respectively. There were no haemosporidian parasites in 2 birds (22.2%). We observed mixed infections in 85.7% of the birds and single infections (14.3%). Each of the 3 parasites was observed together in 2 birds. Both Haemoproteus spp. and Leucocytozoon spp. were detected in 3 birds. Leucocytozoon sp. and Plasmodium sp. were detected in one bird. This is the first report of the occurrence of hemosporidian parasites in sparrowhawks in Northeastern Turkey.

Keywords: Accipiter nisus; Blood smear; Haemosporidian parasites; Northeastern Turkey; Sparrowhawk.

INTRODUCTION
Haemosporidians are obligatory diheteroxen parasites requiring both vertebrate and blood-sucking insect hosts to complete their life cycle (1). Insects are the definitive hosts in that in this host the sexual part of the parasite life cycle occurs. Species of genus Plasmodium develop in mosquitoes of the family Culicidae (Genera: Culex, Aedes, Culiseta, Anopheles, Mansonia and Aedemymia). The primary vectors for Haemoproteus parasites are biting midges of the genus Culicoides (Diptera: Ceratopogonidae) and louse flies of the family Hippoboscidae (1). Vectors of Leucocytozoon are black flies (Diptera: Simulidae) (2).

Avian haemosporidian parasites constitute those that infect erythrocytes and other organs within their hosts (1). Avian haemosporidian parasites (Plasmodium spp., Haemoproteus spp. and Leucocytozoon spp.) can affect host survival (3-4) and body condition (5) with extreme cases resulting in the death of the host (6). Plasmodium infections are thought to be the most dangerous (7).

Haemoproteus spp. is found in high prevalence in migratory birds causing a decrease in the levels of body fat and slow performance during migration (8). Despite the ecological significance of birds, many aspects of their biology remain a little-known, including the diversity of parasites infecting them in the wildlife (9).

Parasitaemia due to haemoproteozooan parasites has been detected in microscopic examination in pigeons and dove samples from Bolivia (10), Brazil (11), Mexico (12), Texas (13), Nebraska (14) and infection rates were reported as 18%, 19.3-100%, 90%, 91%, 83% respectively. In Turkey, Gulanber...
et al. (15) and Senlik et al. (16) obtained average infection rates for *H. columbae* in adult domestic pigeons of 43.2% and 18.8%. Oz et al. (17) obtained infection rates for *H. columbae* in adult and nestling domestic pigeons from Adana of 89.02% and 78.57% respectively. The prevalence of parasitemia has been recorded in different geographical areas in Turkey varying between 57% and 74% (18-20).

The sparrowhawk (*Accipiter nisus*) is a small raptor, member of the family Accipitridae. Throughout the world, there are 50 different species of the genus Accipiter. The sparrowhawk is a main predator of small birds, especially sparrows (21-23). Quail hunting with sparrowhawks is an ancestral sport in Anatolia. Predators migrate from Asia and Europe to Africa using the Eurasian-East African flight path. The sparrowhawks, fly over the Eastern Turkey during this migration period and finally reach the Coruh Valley in Erzurum Province (24-26).

Hematology is an important aspect of veterinary medicine. It is difficult to depict the haemoproteozoan parasites in avian blood cells. The researchers needs to describe the standard morphology of cells in order to interpret changes in them. The aim of this preliminary study was to determine the occurrence of *Haemoproteus* spp., *Leucocytozoon* spp. and *Plasmodium* spp., the haemosporidian parasites in the blood of sparrowhawks in Northeast Turkey.

MATERIAL AND METHODS

In this study, nine wounded and clinically incurable hawks provided by certified hunters during the hawk migration season in the north-eastern Turkey and brought to the clinic. All birds had been collected from different areas of Rize and Erzurum for the study of a PhD thesis (27). The sparrowhawks were provided during the hawk migration season (between July-October) in north-eastern Turkey. Two of them were male and seven were female. All of them were 1-1.5 years old. Blood samples were prepared from 9 sparrowhawks.

A small amount of blood (approximately 20 μL) was obtained from the ulnar (wing) vein. Thin smears were prepared from blood samples, air-dried, and fixed in absolute methanol. All smears were stained with 5% Giemsa solution and examined under the light microscopy (Olympus BX52 with DP72 camera system, Tokyo, Japan) by using the immersion objective (x1000) for the presence of haemoproteozoa. Specific diagnostic criteria were used for species identification (28-30). Microscopic examination of blood smears using Giemsa stain is considered a sensitive method to detect trophozoites, schizonts and gametocytes. *Haemoproteus* spp. gametocytes are only present within erythrocytes and they have a “halter-shaped” appearance with little displacement of the host nucleus. Schizonts are not seen on peripheral blood smears. *Leucocytozoon* spp. form gamonts in white blood cells. Gametocytes cause marked enlargement and distortion of the infected cells producing an American football ball-like appearance. Intraerythrocytic trophozoite of *Plasmodium* spp. are small round to oval structures with a large vacuole that forces the erythrocyte nucleus to one pole of the cell (31-33).

RESULTS

After the microscopic examination, one or more haemosporidian parasites were detected in 7 of 9 birds (77.8%). *Haemoproteus* spp. (Figure 1), *Leucocytozoon* spp. (Figure 2) and *Plasmodium* spp. (Figure 3) were detected in 5 (55.6%), 6 (66.7%) and 4 (44.4%) birds, respectively. There were no haemosporidian parasites in 2 birds (22.2%). Mixed infections were detected in 6 birds (85.7%). All of the 3 parasites were observed together in 2 birds. Both *Haemoproteus* spp. and *Leucocytozoon* spp. were detected in 3 birds. *Leucocytozoon* spp. and *Plasmodium* spp. were detected in one bird. Finally, *Plasmodium* sp. was detected alone in 1 bird. The distribution of haemosporidians parasites infection in sparrowhawks is displayed in Table 1.

DISCUSSION

Bensch et al. (2009) reported that the diversity of avian haemosporidian parasites among bird species worldwide includes data for 21 out of the 239 recognized species of hawks and eagles (34). In another study (35) of the Philippine Islands, of the 215 screened birds, 30 (14%) presented with different types of multiple infections: 31 infected individuals had a single *Haemoproteus* lineage (14%), 18 a single *Leucocytozoon* lineage (8%) and 12 a single *Plasmodium* lineage (6%).

In this study, *Haemoproteus* spp., *Leucocytozoon* spp. and *Plasmodium* spp. were detected in 55.6%, 66.7% and 44.4% respectively in sparrowhawk. Besides, total infection rate was found as 77.8%. We observed more mixed infections than single infections. Our data support previous studies.
that showed *Leucocytozoon* and *Haemoproteus* to be generally more prevalent than *Plasmodium* (36–38). This difference in prevalence is likely due to less pathogenicity of *Haemoproteus* and *Leucocytozoon* as compared to *Plasmodium* (6–7, 39).

Previous studies showed that *Columbidae* family has a high prevalence of haemosporidia (7). In Turkey, Gulanber et al. (15) and Senlik et al. (16) obtained average infection rates for *H. columbae* in adult domestic pigeons of 43.2% and 18.8%, respectively. Oz et al. (17) obtained the infection rates for *H. columbae* in adult and nestling domestic pigeons from Adana of 89.0% and 78.6% respectively. Besides, the prevalence was recorded in different geographical areas in Turkey between 57% and 74% (18–20). In the present study, the rate of haemosporidian parasites was found as 77.8% in sparrowhawks.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>Haemoproteus spp. and Leucocytozoon spp.</td>
</tr>
<tr>
<td>3</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>Haemoproteus spp. and Leucocytozoon spp.</td>
</tr>
<tr>
<td>4</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>Haemoproteus spp., Leucocytozoon spp. and Plasmodium sp.</td>
</tr>
<tr>
<td>5</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>Haemoproteus spp. and Leucocytozoon spp.</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>Haemoproteus spp., Leucocytozoon spp. and Plasmodium sp.</td>
</tr>
<tr>
<td>9</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>Leucocytozoon spp. and Plasmodium spp.</td>
</tr>
<tr>
<td>Total</td>
<td>5</td>
<td>6</td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>

Figure 1: *Haemoproteus* sp. gametocyte in thin smears with Giemsa staining, original magnification: X1000.

Figure 2: *Leucocytozoon* sp. gametocyte in thin smears with Giemsa staining, original magnification: X1000.

Figure 3: *Plasmodium* sp. gametocyte in thin smears with Giemsa staining, original magnification: X1000.
In conclusion, to the best knowledge of the authors this is the first study to report the occurrence of haemosporidian parasites in sparrowhawk in Northeastern Turkey which was determined as Leucocytozoon sp. (66.7%), Haemoproteus sp. (55.6%) and Plasmodium sp. (44.4%) in haematological smears.

In Anatolia, sparrowhawks are valuable species in danger of extinction. In the literature review, it was observed that the studies about haemosporidian parasites in wild birds are sparse in Turkey. Because of the importance of sparrowhawk in Eastern Turkey, we believe that this study will form a basis for the future studies of other parasitologists. The limitations of this study include the small sample size and the lack of molecular techniques to detect the blood parasites. More studies using a greater number of birds are required to verify the results of this study.

ACKNOWLEDGEMENT
Blood samples used in this study were obtained from 9 sparrowhawks collected for the study of PhD thesis of Hulya Balkaya. The authors thanks to Dr. Hulya Balkaya for permission to use of blood samples.

REFERENCES