In vitro production of equine embryos and genetic testing

In Vitro Production of Equine Embryos and Preimplantation Genetic Testing

Carolina Herrera, M Sc.
Clinic for Reproductive Medicine, Vetsuisse - Faculty, University of Zurich

In Vitro Fertilization (FIV)

- Oocytes from OPU or slaughterhouse ovaries
- Sperm sample
- In vitro maturation
- Sperm preparation
- 22-24h in microdroplets of IVFm under mineral oil
- CO₂ incubator

Methodology

In Vitro Maturation of oocytes

- TCM199 + NaHCO₃ + FSH + EGF + IGF + 10% SFB
- 38° C
- Saturated humidity
- 5% CO₂ in air for 24 - 30 hs

Methodology

MII oocytes

SEMEN

Sperm cells
In vitro production of equine embryos and genetic testing

Methodology

In Vitro culture for 6 to 8 days
5% CO2, 6% O2

ICSI: Factors affecting the success rate

- Donor mare
 - Type of infertility
- Sperm
 - Stallion
 - Sample
- Laboratory setup
 - Strict control of conditions
- Operator

Clinical application of ICSI

- Subfertile stallions
- Subfertile mares
- Semen samples of poor quality, unsuitable for AI
- Limited amount of semen samples
- Mare or stallions that die unexpectedly
- Mares in training
- Young mares

Expected results

10 oocytes
7 mature oocytes
4.5 cleaved embryos
0.9 blastocysts
0.54 pregnancies

70% IVM
65% cleaved after ICSI
20% blastocyst rate
60% pregnancy rate

Clinical application of ICSI
In vitro production of equine embryos and genetic testing

Ovum Pick Up (OPU) – Intracytoplasmic Sperm Injection (ICSI).

- OPU-ICSI is performed throughout the year, every 14 days
- Only one straw of semen can be used to fertilize more than 100 oocytes
- Each straw can be thawed, diluted x 100 and re-frozen
- Equine embryos produced by ICSI can be successfully cryopreserved

Preimplantation Genetic Testing: Methodology

1) Obtain a result after the genetic analysis, starting from a very small sample.
2) Maintain the viability of the embryo after biopsy and cryopreservation.

Materials and Methods

Biopsy
In vitro production of equine embryos and genetic testing

Embryo biopsy vs. blastocoele fluid

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>Amplified</th>
<th>% Amplified</th>
</tr>
</thead>
<tbody>
<tr>
<td>Embryo biopsy</td>
<td>13</td>
<td>11</td>
<td>84.50%</td>
</tr>
<tr>
<td>Blastocoele fluid</td>
<td>34</td>
<td>29</td>
<td>85.20%</td>
</tr>
<tr>
<td>Total</td>
<td>47</td>
<td>40</td>
<td>85.10%</td>
</tr>
</tbody>
</table>

- The collection of blastocoele fluid can be used in combination with vitrification of equine large embryos

Preimplantation Genetic Diagnosis (PGD)

- Results reported in:
 - Argentina
 - Colombia
 - Germany
 - Spain
 - Sweden
 - USA
- Main application:
 - Embryo sex determination
- Other applications:
 - Detect mutations associated with genetic disorders
 - Select genes linked to certain phenotypes (e.g., coat color)

WHY?

Transfer only embryos of the desired sex or carrying the desired genetic trait.

Significantly reduce the number of recipient mares.

Avoid the need to abort pregnancies of the undesired sex.

Pregnancy rates at 25 days of gestation

<table>
<thead>
<tr>
<th></th>
<th>Embryos</th>
<th>Time before ET</th>
<th>n</th>
<th>Pregnancy rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biopsied</td>
<td>1 – 2 h</td>
<td>58</td>
<td>34</td>
<td>58 / 58 (58.62)</td>
</tr>
<tr>
<td></td>
<td>6 – 10 h</td>
<td>46</td>
<td>29/46 (63.04)</td>
<td></td>
</tr>
<tr>
<td>Non-Biopsed</td>
<td>1 – 2 h</td>
<td>35</td>
<td>23/35 (65.71)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6 – 10 h</td>
<td>6</td>
<td>3/6 (50)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>89/145 (61.37)</td>
<td></td>
</tr>
</tbody>
</table>

SRY

Sex determination in males
429 bp (males)

AMELOGENIN

Protein involved in teeth enamel
184 bp (female)
160 y 200 bp (male)

PRIMER

<table>
<thead>
<tr>
<th>SEQUENCE</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRY-R</td>
<td>Hasegawa et al, 2000</td>
</tr>
<tr>
<td>AMEL-F</td>
<td>Herrera et al, Theriogenology 2014</td>
</tr>
<tr>
<td>AMEL-R</td>
<td>Herrera et al, Theriogenology 2014</td>
</tr>
</tbody>
</table>
In vitro production of equine embryos and genetic testing

100 embryos
50 female 50 male

PCR (85%)

42.5 female 42.5 male

42.5 + 35 = 57.5 ETs

100 ETs

THANK YOU